158 research outputs found
Breakup of a Stoner model for the 2D ferromagnetic quantum critical point
Re-interpretation of the results by [A. V. Chubukov et. al., Phys. Rev. Lett.
90, 077002 (2003)] leads to the conclusion that ferromagnetic quantum critical
point (FQCP) cannot be described by a Stoner model because of a strong
interplay between the paramagnetic fluctuations and the Cooper channel, at
least in two dimensions.Comment: 5 pages, 2 EPS figures, RevTeX
Finite-Temperature Transition into a Power-Law Spin Phase with an Extensive Zero-Point Entropy
We introduce an generalization of the frustrated Ising model on a
triangular lattice. The presence of continuous degrees of freedom stabilizes a
{\em finite-temperature} spin state with {\em power-law} discrete spin
correlations and an extensive zero-point entropy. In this phase, the unquenched
degrees of freedom can be described by a fluctuating surface with logarithmic
height correlations. Finite-size Monte Carlo simulations have been used to
characterize the exponents of the transition and the dynamics of the
low-temperature phase
Unusual thermoelectric behavior of packed crystalline granular metals
Loosely packed granular materials are intensively studied nowadays.
Electrical and thermal transport properties should reflect the granular
structure as well as intrinsic properties. We have compacted crystalline
based metallic grains and studied the electrical resistivity and the
thermoelectric power as a function of temperature () from 15 to 300K. Both
properties show three regimes as a function of temperature. It should be
pointed out : (i) The electrical resistivity continuously decreases between 15
and 235 K (ii) with various dependences, e.g. at low ,
while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near
60K, and (v) presents a rather unusual square root of temperature dependence at
low temperature. It is argued that these three regimes indicate a competition
between geometric and thermal processes, - for which a theory seems to be
missing in the case of TEP. The microchemical analysis results are also
reported indicating a complex microstructure inherent to the phase diagram
peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure
Discovery of mating in the major African livestock pathogen Trypanosoma congolense
The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen
Heterosexual couples and prostate cancer support groups: a gender relations analysis.
Introduction: Men diagnosed with prostate cancer (PCa) can receive supportive care from an array of sources including female partners and prostate cancer support groups (PCSGs). However, little is known about how heterosexual gender relations and supportive care play out among couples who attend PCSGs. Distilling such gender relation patterns is a key to understanding and advancing supportive care for men who experience PCa and their families
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA)
ACE Network
Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA)
The Autism Genome Project (AGP) from Autism Speaks (USA)
Canadian Institutes of Health Research (CIHR), Genome Canada
Health Research Board (Ireland)
Hilibrand Foundation (USA)
Medical Research Council (UK)
National Institutes of Health (USA)
Ontario Genomics Institute
University of Toronto McLaughlin Centre
Simons Foundation
Johns Hopkins
Autism Consortium of Boston
NLM Family foundation
National Institute of Health grants
National Health Medical Research Council
Scottish Rite
Spunk Fund, Inc.
Rebecca and Solomon Baker Fund
APEX Foundation
National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD)
endowment fund of the Nancy Pritzker Laboratory (Stanford)
Autism Society of America
Janet M. Grace Pervasive Developmental Disorders Fund
The Lundbeck Foundation
universities and university hospitals of Aarhus and Copenhagen
Stanley Foundation
Centers for Disease Control and Prevention (CDC)
Netherlands Scientific Organization
Dutch Brain Foundation
VU University Amsterdam
Trinity Centre for High Performance Computing through Science Foundation Ireland
Autism Genome Project (AGP) from Autism Speak
Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
The "0.4 eV" Shape Resonance of Electron Scattering from Mercury in a Franck-Hertz Tube
The alternative version of the Franck-Hertz experiment with mercury, in which
a two-grid tube is used as a combination of electron gun, equipotential
collision space, and detection cell, was analyzed recently in considerable
detail. In particular, it was inferred that, at optimal pressure, the formation
of peaks in the anode current at inelastic thresholds is mediated inside the
detection cell by the large variation, a maximum at 0.4 eV, in the cross
section for elastic scattering. This variation is due to a shape resonance in
the electron-mercury system and is observable persuasively at the onset of
anode current as a sharp peak followed by a clear minimum. In the present
paper, the passage of electrons through the second grid to anode region is
analyzed in terms of kinetic theory. The discussion is based on a simplified
expression for the electron current derivable from an approximate form of the
Boltzmann transport equation that maintains the spatial density gradient but
omits elastic energy losses. The estimated range of pressure underlying this
kind of idealization is in good agreement with experiment. An explicit solution
is obtained by constructing an analytic expression for the momentum transfer
cross section of mercury using a recent theory of generalized Fano profiles for
overlapping resonances. This solution is used in order to model successfully
the formation of peaks at the threshold of anode current and at excitation
potentials, and to explain the dependence of the observed profiles on the
pressure and on the sign and magnitude of the potential across the detection
cell
- …
