7,811 research outputs found
A probabilistic model of insolation for the Mojave Desert area
A discussion of mathematical models of insolation characteristics suitable for use in analysis of solar energy systems is presented and shows why such models are essential for solar energy system design. A model of solar radiation for the Mojave Desert area is presented with probabilistic and deterministic components which reflect the occurrence and density of clouds and haze, and mimic their effects on both direct and indirect radiation. Multiple comparisons were made between measured total energy received per day and the corresponding simulated totals. The simulated totals were all within 11 percent of the measured total. The conclusion is that a useful probabilistic model of solar radiation for the Goldstone, California, area of the Mojave Desert has been constructed
Applying search theory to determine the feasibility of eradicating an invasive population in natural environments
The detectability of invasive organisms influences the feasibility of eradicating an infestation. Search theory offers a framework for defining and measuring detectability, taking account of searcher ability, biological factors and the search environment. In this paper, search theory concepts are incorporated into a population model, and the costs of search and control are calculated as functions of the amount of search effort (the decision variable). Simulations are performed on a set of weed scenarios in a natural environment, involving different combinations of plant longevity, seed longevity and plant fecundity. Results provide preliminary estimates of the cost and duration of eradication programs to assist in prioritising weeds for control. The analysis shows that the success of an eradication program depends critically on the detectability of the target plant, the effectiveness of the control method, the labour requirements for search and control, and the germination rate of the plant.bioeconomics, invasive species, operations research, population dynamics, weed control, Resource /Energy Economics and Policy,
Hydrogen Fire in a Storage Vessel
On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor hazardous systems for proper configuration (i.e., a daily/weekly/monthly check sheet to verify critical purges are active)
Weed Search and Control: Theory and Application
The detectability of invasive organisms influences the costs and benefits of alternative control strategies, and the feasibility of eradicating an infestation. Search theory offers a mathematically rigorous framework for defining and measuring detectability, taking account of searcher ability, biological factors and the search environment. To demonstrate the application of search theory to invasive species control, invasive species detectability is incorporated into a population simulation model. The model is applied to a base set of parameter values that represent reasonable values for a hypothetical weed. The analysis shows the effects of detectability and search time on the duration of an eradication program. Furthermore, for a given level of detectability and search time, the analysis shows that the variables with the greatest influence on the duration of the eradication effort are search speed, kill efficiency and seed longevity. A series of Monte Carlo simulations are performed on a set of five scenarios, involving different combinations of plant longevity, seed longevity and plant fecundity. Results of these simulations are presented as probability distributions and allow us to calculate how the probability of eradication will be affected by search strategy.search and control, search theory, weed control, stage matrix, impedance factors, population dynamics, stochastic model, Farm Management,
ALLOCATING BIOSECURITY RESOURCES IN SPACE AND TIME
Invasive species can cause significant damage to natural environments, agricultural systems, human populations and the economy as a whole. Biological invasions are complex dynamic systems which are inherently uncertain and their control involves allocation of surveillance and treatment resources in space and time. A complicating factor is that there are at least two types of surveillance: active and passive. Active surveillance, undertaken by pest control agencies, has high sensitivity but generally low coverage because of its high cost. Passive surveillance, undertaken by the public, has low sensitivity and may have high coverage depending on human population density. Its effectiveness depends on the extent to which information campaigns succeed in engaging the public to help locate and report pests. Here we use a spatio-temporal model to study the efficient allocation of search and treatment resources in space and time. In particular we look for complementarities between passive and active surveillance. We identify strategies that increase the probability of eradication and/or decrease the cost of managing an invasion. We also explore ways in which the public can be engaged to achieve cost-effective improvements in the probability of detecting and eradicating a pest.search theory, invasive species, dispersal, passive surveillance., Environmental Economics and Policy,
Valuing the biodiversity gains from protecting native plant communities from bitou bush (Chrysanthemoides monilifera subsp rotundata (DC.) T.Norl.) in New South Wales: application of the defensive expenditure method
Valuation of the gains from protection of biodiversity is difficult because the services that provide the benefits do not normally pass through markets where prices can form. But the services sometimes pass through markets where consumers or producers behave in a market-oriented manner, and so the values implicit in this behaviour can be identified and derived. Estimates of the benefits of biodiversity protection are derived from the costs of protecting native plant communities from a major weed in Australia, by following this approach. In 1999, invasion of coastal areas of New South Wales by bitou bush (Chrysanthemoides monilifera subsp. rotundata (DC.) T. Norl.) was listed as a key process threatening native plants under the NSW Threatened Species Conservation Act 1995. In accordance with the Act, the Department of Environment and Climate Change prepared a Threat Abatement Plan (TAP) to reduce the impacts of bitou bush on biodiversity at each threatened site. The costs of protecting sites vary closely with the number of priority native species and communities at each site. Following standard economic assumptions about market transactions, these costs are interpreted to provide values the benefits of protecting extra species, communities, and sites. Key words: Bitou bush, Chrysanthemoides monilifera, threat abatement plan, valuation of biodiversity, benefit-cost analysis, weed control, defensive-expenditure method.Bitou bush, Chrysanthemoides monilifera, threat abatement plan, valuation of biodiversity, benefit-cost analysis, weed control, defensive-expenditure method, Demand and Price Analysis, Environmental Economics and Policy,
Ferroelectric charge order stabilized by antiferromagnetism in multiferroic LuFe2O4
Neutron diffraction measurements on multiferroic LuFe2O4 show changes in the
antiferromagnetic (AFM) structure characterized by wavevector q = (1/3 1/3 1/2)
as a function of electric field cooling procedures. The increase of intensity
from all magnetic domains and the decrease in the 2D magnetic order observed
below the Neel temperature are indicative of increased ferroelectric charge
order. The AFM order changes the dynamics of the CO state, and stabilizes it.
It is determined that the increase in electric polarization observed at the
magnetic ordering temperature is due to a transition from paramagnetic 2D
charge order to AFM 3D charge order.Comment: 5 pages, 3 figure
Proper Motions of PSRs B1757-24 and B1951+32: Implications for Ages and Associations
Over the last decade, considerable effort has been made to measure the proper
motions of the pulsars B1757-24 and B1951+32 in order to establish or refute
associations with nearby supernova remnants and to understand better the
complicated geometries of their surrounding nebulae. We present proper motion
measurements of both pulsars with the Very Large Array, increasing the time
baselines of the measurements from 3.9 yr to 6.5 yr and from 12.0 yr to 14.5
yr, respectively, compared to previous observations. We confirm the
non-detection of proper motion of PSR B1757-24, and our measurement of (mu_a,
mu_d) = (-11 +/- 9, -1 +/- 15) mas yr^{-1} confirms that the association of PSR
B1757-24 with SNR G5.4-1.2 is unlikely for the pulsar characteristic age of
15.5 kyr, although an association can not be excluded for a significantly
larger age. For PSR B1951+32, we measure a proper motion of (mu_a, mu_d) =
(-28.8 +/- 0.9, -14.7 +/- 0.9) mas yr^{-1}, reducing the uncertainty in the
proper motion by a factor of two compared to previous results. After correcting
to the local standard of rest, the proper motion indicates a kinetic age of ~51
kyr for the pulsar, assuming it was born near the geometric center of the
supernova remnant. The radio-bright arc of emission along the pulsar proper
motion vector shows time-variable structure, but moves with the pulsar at an
approximately constant separation ~2.5", lending weight to its interpretation
as a shock structure driven by the pulsar.Comment: LaTeX file uses emulateapj.cls; 7 pages, 4 figures, to be published
ApJ February 10, 2008, v674 p271-278. Revision reflects journal formatting;
there are no substantial revision
Recommended from our members
The Role of Seed Bank and Germination Dynamics in the Restoration of a Tidal Freshwater Marsh in the Sacramento–San Joaquin Delta
Liberty Island, California, is a historical freshwater tidal wetland that was converted to agricultural fields in the early 1900s. Liberty Island functioned as farmland until an accidental levee break flooded the area in 1997, inadvertently restoring tidal marsh hydrology. Since then, wetland vegetation has naturally recolonized part of the site. We conducted a seed bank assay at the site and found that despite a lack of germination or seedling recruitment at the site, the seed bank contained a diverse plant community, indicating that the site’s continuous flooding was likely suppressing germination. Additionally, the frequency of germinating seeds in the seed bank did not represent the dominant adult plant community. We conducted a cold stratification study to determine if this observed disparity could be explained by seed germination dynamics, and whether germination could be enhanced using a pre-germination cold exposure, particularly for species of concern for wetland restoration. The cold stratification study showed that longer durations of pre-germination cold enhanced germination in Schoenoplectus acutus, but reduced germination in Schoenoplectus californicus, and had no effect on Typha latifolia. Overall, germination of S. californicus and S. acutus was much lower than T. latifolia. Our findings suggest that seeding may not be an effective restoration technique for Schoenoplectus spp., and, to improve restoration techniques, further study is needed to more comprehensively understand the reproduction ecology of important marsh species
- …
