4,201 research outputs found

    The Minority’s Duty of Loyalty in Close Corporations

    Get PDF

    Computational challenges of systems biology

    Get PDF
    Progress in the study of biological systems such as the heart, brain, and liver will require computer scientists to work closely with life scientists and mathematicians. Computer science will play a key role in shaping the new discipline of systems biology and addressing the significant computational challenges it poses

    Model Orchestration: Addressing the Model Management Challenges of Systems Biology

    Get PDF
    Biological modelling is an increasingly complex and diverse firld. As well as developing new models for biological phenomena, there is a need to integrate existing models and scale up to investigate higher level behaviour. To achieve this integration, techniques and tools are required to catalogue and understand existing models, and to support the development of new models ready for integration. We describe our approach to this problem and validate the approach with examples

    Three-Body approach to the K^- d Scattering Length in Particle Basis

    Get PDF
    We report on the first calculation of the scattering length A_{K^-d} based on a relativistic three-body approach where the two-body input amplitudes coupled to the Kbar N channels have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes,based on the fixed center approximation, considered as a good approximation for a loosely bound target, and for which we find significant deviations from the exact three-body results. Effects of the hyperon-nucleon interaction, and deuteron DD-wave component are also evaluated.Comment: 5 pages, Submitted to Phys. Rev.

    OC-163 identification of inflammatory bowel disease (IBD) using field asymmetric ion mobility spectrometry (FAIMS)

    Get PDF
    Introduction Resident colonic bacteria, principally anaerobes and firmicutes, ferment undigested fibre. The resultant volatile organic compounds (VOCs) formed are dissolved in the faeces but also absorbed and excreted in the urine. We have previously shown that electronic nose (E-nose) analysis of urine VOCs distinguishes between Crohn's disease (CD), ulcerative colitis (UC) and healthy volunteers (HV): the underlying principle is pattern recognition of disease-specific “chemical fingerprint”. High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) offers a possible alternative. The underlying principle is separation of VOC chemical components based on their different ion mobilties in high electric fields. We performed a pilot study in the above groups, the patients in remission (Rem) or with active disease (AD), to assess if this technology could achieve separation between the groups. The results were validated against E-nose analysis. Methods 59 subjects were studied; HV n=14, UC (Rem) n=18, UC (AD) n=4; CD (Rem) n=19, CD (AD) n=4. Urine samples (7 ml) in universal containers (25 ml) were heated to 40±0.1 C. The headspace (the air above the sample) was then analysed using FAIMS. The data were analysed by Fisher Discriminant Analysis. Results The technique distinguished between the three groups. Additionally, patients with active disease could be distinguished from those in remission. These results were concordant with E-nose analysis. Conclusion This pilot shows that urine VOCs, analysed by the different approaches of E-nose and FAIMS, the latter a novel application, can distinguish the healthy from those with UC and CD when disease is active or in remission. The two technologies together offer a non-invasive approach to diagnosis and follow-up in inflammatory bowel disease

    Surveyor batteries Final engineering report

    Get PDF
    Design and performance of Surveyor spacecraft silver-zinc main batter

    In situ measurements of density fluctuations and compressibility in silica glass as a function of temperature and thermal history

    Full text link
    In this paper, small-angle X-ray scattering measurements are used to determine the different compressibility contributions, as well as the isothermal compressibility, in thermal equilibrium in silica glasses having different thermal histories. Using two different methods of analysis, in the supercooled liquid and in the glassy state, we obtain respectively the temperature and fictive temperature dependences of the isotheraml compressibility. The values obtained in the glass and supercooled liquid states are very close to each other. They agree with previous determinations of the literature. The compressibility in the glass state slightly decreases with increasing fictive temperature. The relaxational part of the compressibility is also calculated and compared to previous determinations. We discussed the small differences between the different determinations

    A Kinematic and Kinetic Case Study of a Netball Shoulder Pass

    Get PDF
    The majority of studies analysing netball skills using force platforms have focused on reducing the risk of injury from compression and torsion forces on the knee and ankle joints during landing and pivoting. In this preliminary case study our aim was to investigate the efficacy of a combination of tools to describe the kinematic and kinetic mechanisms underlying the netball shoulder pass. The segmental movements of the netball shoulder pass were analysed from video and force platform data in order to develop a suitable methodology for use in a larger study. Peak vertical ground reaction force of 850 N was found to coincide with the point of maximum velocity of the centre of pressure, occurring 40 ms before ball release. The participant’s centre of pressure continued anteriorly for 40 ms after ball release. The wrist traveled in a linear path during the propulsion phases, maximising impulse to the ball. A large shear force also occurred in the anterior posterior direction coinciding with ball release due to friction between the left shoe and the force platform, resisting the forward momentum of the body. Negative acceleration of the upper limb following the propulsion phase reached a peak of 68.6 rad/s-2 for the arm and 82.4 rad/s-2 for the forearm. Peak shoulder deceleration torque was calculated at 4.1 Nm which was greater than during acceleration (1.6 Nm). The combination of kinematic and kinetic tools yielded a comprehensive analysis of the investigated skill. Future biomechanical studies may determine differences in skill execution between novice and professional players or variability in movement within a population of skilled netball players
    corecore