685 research outputs found
A precise description of the p-adic valuation of the number of alternating sign matrices
Following Sun and Moll, we study v_p(T(N)), the p-adic valuation of the
counting function of the alternating sign matrices. We find an exact analytic
expression for it that exhibits the fluctuating behaviour, by means of Fourier
coefficients. The method is the Mellin-Perron technique, which is familiar in
the analysis of the sum-of-digits function and related quantities
Modeling the effects of plant-to-plant gene flow, larval behavior, and refuge size on Pest Resistance to Bt Cotton
Growers of Bacillus thuringiensis (Bt) crops often use refuges of non-Bt plants to delay pest resistance, but plant-to-plant gene flow between Bt and non-Bt crops could affect this strategy. Here we used simulation modeling to explore the consequences of pollen- and seed-mediated gene flow in cotton fields on the evolution of resistance in a generic pest. We modeled a landscape of 0.5-ha fields where growers used farm-saved seed, as could often occur in the developing world. Specifically, we examined the effects of moderate and high gene flow rates, larval feeding behavior, dominance of resistance, refuge type and abundance, and the interactions among these factors. With either completely dominant or completely recessive inheritance of resistance, gene flow among plants and larval feeding behavior had limited practical impact on resistance evolution. With intermediate dominance, however, moderate or high gene flow among plants substantially accelerated resistance evolution in some simulations where non-Bt cotton refuges were 5 or 20% of the cotton acreage. The acceleration was usually greater when larvae moved and fed indiscriminately among Bt and non-Bt cotton plants than when larvae were sedentary or discriminated among plant types. Adding alternative host plant refuges to the landscape delayed resistance, while increasing the non-Bt cotton refuge from 20 to 50% of the cotton acreage had positive, negative, or neutral effects, depending on dominance, the amount of alternative host plant refuges, and larval feeding behavior. The results suggest that, under certain conditions, reducing gene flow between refuges and Bt crops could help delay pest resistance. (Résumé d'auteur
Sensitivity and specificity of detection methods for erythropoietin doping in cyclists
Recombinant human erythropoietin (rHuEPO) is used as doping a substance. Anti-doping efforts include urine and blood testing and monitoring the athlete biological passport (ABP). As data on the performance of these methods are incomplete, this study aimed to evaluate the performance of two common urine assays and the ABP. In a randomized, double-blinded, placebo-controlled trial, 48 trained cyclists received a mean dose of 6000 IU rHuEPO (epoetin beta) or placebo by weekly injection for eight weeks. Seven timed urine and blood samples were collected per subject. Urine samples were analyzed by sarcosyl-PAGE and isoelectric focusing methods in the accredited DoCoLab in Ghent. A selection of samples, including any with false presumptive findings, underwent a second sarcosyl-PAGE confirmation analysis. Hematological parameters were used to construct a module similar to the ABP and analyzed by two evaluators from an Athlete Passport Management Unit. Sensitivity of the sarcosyl-PAGE and isoelectric focusing assays for the detection of erythropoietin abuse were 63.8% and 58.6%, respectively, with a false presumptive finding rate of 4.3% and 6%. None of the false presumptive findings tested positive in the confirmation analysis. Sensitivity was highest between 2 and 6 days after dosing, and dropped rapidly outside this window. Sensitivity of the ABP was 91.3%. Specificity of the urine assays was high; however, the detection window of rHuEPO was narrow, leading to questionable sensitivity. The ABP, integrating longitudinal data, is more sensitive, but there are still subjects that evade detection. Combining these methods might improve performance, but will not resolve all observed shortcomings
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Boundary lubrication properties of materials with expansive freezing
We have performed molecular dynamics simulations of solid-solid contacts
lubricated by a model fluid displaying many of the properties of water,
particularly its expansive freezing. Near the region where expansive freezing
occurs, the lubricating film remains fluid, and the friction force decreases
linearly as the shear velocity is reduced. No sign of stick-slip motion is
observed even at the lowest velocities. We give a simple interpretation of
these results, and suggest that in general good boundary lubrication properties
will be found in the family of materials with expansive freezing.Comment: Version to appear in Phys. Rev. Let
Nonlinear sliding friction of adsorbed overlayers on disordered substrates
We study the response of an adsorbed monolayer on a disordered substrate
under a driving force using Brownian molecular-dynamics simulation. We find
that the sharp longitudinal and transverse depinning transitions with
hysteresis still persist in the presence of weak disorder. However, the
transitions are smeared out in the strong disorder limit. The theoretical
results here provide a natural explanation for the recent data for the
depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.
2,2':6',2''-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes
Nanophase-separated amphiphilic polymer co-networks are ideally suited as responsive membranes due to their stable co-continuous structure. Their functionalization with redox-responsive 2,2′:6′,2′′-terpyridine–metal complexes and light-responsive spiropyran derivatives leads to a novel material with tunable optical, redox and permeability properties. The versatility of the system in complexing various metal ions, such as cobalt or iron at different concentrations, results in a perfect monitoring over the degree of crosslinking of the hydrophilic poly(2-hydroxyethyl acrylate) channels. The reversibility of the complexation, the redox state of the metal and the isomerization to the merocyanine form upon UV illumination was evidenced by cyclic voltammetry, UV-Vis and permeability measurements under sequential conditions. Thus, the membrane provides light and redox addressable functionalities due to its adjustable and mechanically stable hydrogel network
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Complements and signed digit representations: Analysis of a multi-exponentiation-algorithm of Wu, Lou, Lai and Chang
Wu, Lou, Lai and Chang proposed a multi-exponentiation algorithm using binary
complements and the non-adjacent form. The purpose of this paper is to show
that neither the analysis of the algorithm given by its original proposers nor
that by other authors are correct. In fact it turns out that the complement
operation does not have significant influence on the performance of the
algorithm and can therefore be omitted
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
- …
