1,217 research outputs found

    Physics Opportunities of e+e- Linear Colliders

    Get PDF
    We describe the anticipated experimental program of an e+e- linear collider in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current collider designs and the expected experimental environment. We then discuss precision studies of the W boson and top quark. Finally, we review the range of models proposed to explain the physics of electroweak symmetry breaking and show, for each case, the central role that the linear collider experiments will play in elucidating this physics. (to appear in Annual Reviews of Nuclear and Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde

    Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.Comment: 17 page

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Spin asymmetries A1 and structure functions g1 of the proton and the deuteron from polarized high energy muon scattering.

    Get PDF
    Adeva B, Akdogan T, Arik E, et al. Spin asymmetries A(1) and structure functions g(1) of the proton and the deuteron from polarized high energy muon scattering. Phys.Rev. D. 1998;58(11): 112001.We present the final results of the spin asymmetries A(1) and the spin structure functions g(1) of the proton and the deuteron in the kinematic range 0.0008 < x < 0.7 and 0.2 < Q(2) < 100 GeV2. For the determination of A(1), in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x < 0.02, so it is combined with the usual method to provide the optimal set of results. [S0556-2821(98)07017-9]

    Observation of a significant excess of π0π0\pi^{0}\pi^{0} events in B meson decays

    Get PDF
    We present an observation of the decay B0π0π0B^{0} \to \pi^{0} \pi^{0} based on a sample of 124 million BBˉB\bar{B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy BB Factory at SLAC. We observe 46±13±346 \pm 13 \pm 3 events, where the first error is statistical and the second is systematic, corresponding to a significance of 4.2 standard deviations including systematic uncertainties. We measure the branching fraction \BR(B^{0} \to \pi^{0} \pi^{0}) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}, averaged over B0B^{0} and Bˉ0\bar{B}^{0} decays

    Alterations in the Interleukin-1/Interleukin-1 Receptor Antagonist Balance Modulate Cardiac Remodeling following Myocardial Infarction in the Mouse

    Get PDF
    Background Healing after acute myocardial infarction (AMI) is characterized by an intense inflammatory response and increased Interleukin-1 (IL-1) tissue activity. Genetically engineered mice lacking the IL-1 receptor (IL-1R1-/-, not responsive to IL-1) or the IL-1 receptor antagonist (IL-1Ra, enhanced response to IL-1) have an altered IL-1/IL-1Ra balance that we hypothesize modulates infarct healing and cardiac remodeling after AMI. Methods IL-1R1-/- and IL-1Ra-/- male mice and their correspondent wild-types (WT) were subjected to permanent coronary artery ligation or sham surgery. Infarct size (trichrome scar size), apoptotic cell death (TUNEL) and left ventricular (LV) dimensions and function (echocardiography) were measured prior to and 7 days after surgery. Results When compared with the corresponding WT, IL-1R1-/- mice had significantly smaller infarcts (−25%), less cardiomyocyte apoptosis (−50%), and reduced LV enlargement (LV end-diastolic diameter increase [LVEDD], −20%) and dysfunction (LV ejection fraction [LVEF] decrease, −50%), whereas IL-1Ra-/- mice had significantly larger infarcts (+75%), more apoptosis (5-fold increase), and more severe LV enlargement (LVEDD increase,+30%) and dysfunction (LVEF decrease, +70%)(all P values \u3c0.05). Conclusions An imbalance in IL-1/IL-1Ra signaling at the IL-1R1 level modulates the severity of cardiac remodeling after AMI in the mouse, with reduced IL-1R1 signaling providing protection and unopposed IL-1R1 signaling providing harm

    Mechanism of action of the new anti-ischemia drug ranolazine

    Get PDF
    Myocardial ischemia is associated with reduced ATP fluxes and decreased energy supply resulting in disturbances of intracellular ion homeostasis in cardiac myocytes. In the recent years, increased persistent (late) sodium current was suggested to contribute to disturbed ion homeostasis by elevating intracellular sodium concentration with subsequent elevation of intracellular calcium. The new anti-ischemia drug ranolazine, a specific inhibitor of late sodium current, reduces sodium overload and hence ameliorates disturbed ion homeostasis. This is associated with symptomatic improvement of angina in patients. Moreover, ranolazine was shown to exhibit anti-arrhythmic effects. In the present article, we review the relevant pathophysiological concepts for the role of late sodium inhibition and summarize the most recent data from basic as well as clinical studies

    Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study

    Get PDF
    Heart failure following acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Our previous observation that injection of apoptotic peripheral blood mononuclear cell (PBMC) suspensions was able to restore long-term cardiac function in a rat AMI model prompted us to study the effect of soluble factors derived from apoptotic PBMC on ventricular remodelling after AMI. Cell culture supernatants derived from irradiated apoptotic peripheral blood mononuclear cells (APOSEC) were collected and injected as a single dose intravenously after myocardial infarction in an experimental AMI rat model and in a porcine closed chest reperfused AMI model. Magnetic resonance imaging (MRI) and echocardiography were used to quantitate cardiac function. Analysis of soluble factors present in APOSEC was performed by enzyme-linked immunosorbent assay (ELISA) and activation of signalling cascades in human cardiomyocytes by APOSEC in vitro was studied by immunoblot analysis. Intravenous administration of a single dose of APOSEC resulted in a reduction of scar tissue formation in both AMI models. In the porcine reperfused AMI model, APOSEC led to higher values of ejection fraction (57.0 vs. 40.5%, p < 0.01), a better cardiac output (4.0 vs. 2.4 l/min, p < 0.001) and a reduced extent of infarction size (12.6 vs. 6.9%, p < 0.02) as determined by MRI. Exposure of primary human cardiac myocytes with APOSEC in vitro triggered the activation of pro-survival signalling-cascades (AKT, Erk1/2, CREB, c-Jun), increased anti-apoptotic gene products (Bcl-2, BAG1) and protected them from starvation-induced cell death. Intravenous infusion of culture supernatant of apoptotic PBMC attenuates myocardial remodelling in experimental AMI models. This effect is probably due to the activation of pro-survival signalling cascades in the affected cardiomyocytes

    Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction

    Get PDF
    Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling
    corecore