9,138 research outputs found

    Field dependent quasiparticles in the infinite dimensional Hubbard model

    Full text link
    We present dynamical mean field theory (DMFT) results for the local spectral densities of the one- and two-particle response functions for the infinite dimensional Hubbard model in a magnetic field. We look at the different regimes corresponding to half-filling, near half-filling and well away from half-filling, for intermediate and strong values of the local interaction UU. The low energy results are analyzed in terms of quasiparticles with field dependent parameters. The renormalized parameters are determined by two different methods, both based on numerical renormalization group (NRG) calculations, and we find good agreement. Away from half-filling the quasiparticle weights, zσ(H)z_\sigma(H), differ according to the spin type σ=\sigma=\uparrow or σ=\sigma=\downarrow. Using the renormalized parameters, we show that DMFT-NRG results for the local longitudinal and transverse dynamic spin susceptibilities in an arbitrary field can be understood in terms of repeated scattering of these quasiparticles. We also check Luttinger's theorem for the Hubbard model and find it to be satisfied in all parameter regimes and for all values of the magnetic field.Comment: 14 pages, 21 figure

    Renormalized Parameters for Impurity Models

    Full text link
    We show that the low energy behaviour of quite diverse impurity systems can be described by a single renormalized Anderson model, with three parameters, an effective level ϵ~d\tilde\epsilon_d, an effective hybridization V~\tilde V, and a quasiparticle interaction U~\tilde U. The renormalized parameters are calculated as a function of the bare parameters for a number of impurity models, including those with coupling to phonons and a Falikov-Kimball interaction term. In the model with a coupling to phonons we determine where the interaction of the quasiparticles changes sign as a function of the electron-phonon coupling. In the model with a Falikov-Kimball interaction we show that to a good approximation the low energy behaviour corresponds to that of a bare Anderson model with a shifted impurity level.Comment: 14 pages, 12 figures; Revised Sec. 2 and

    Spectral functions for single- and multi-Impurity models using DMRG

    Full text link
    This article focuses on the calculation of spectral functions for single- and multi-impurity models using the density matrix renormalization group (DMRG). To calculate spectral functions from DMRG, the correction vector method is presently the most widely used approach. One, however, always obtains Lorentzian convoluted spectral functions, which in applications like the dynamical mean-field theory can lead to wrong results. In order to overcome this restriction we show how to use the Lehmann formula to calculate a peak spectrum for the spectral function. We show that this peak spectrum is a very good approximation to a deconvolution of the correction vector spectral function. Calculating this deconvoluted spectrum directly from the DMRG basis set and operators is the most natural approach, because it uses only information from the system itself. Having calculated this excitation spectrum, one can use an arbitrary broadening to obtain a smooth spectral function, or directly analyze the excitations. As a nontrivial test we apply this method to obtain spectral functions for a model of three coupled Anderson impurities. Although, we are focusing in this article on impurity models, the proposed method for calculating the peak spectrum can be easily adapted to usual lattice models.Comment: 11 pages, 14 figure

    Dynamic response functions for the Holstein-Hubbard model

    Full text link
    We present results on the dynamical correlation functions of the particle-hole symmetric Holstein-Hubbard model at zero temperature, calculated using the dynamical mean field theory which is solved by the numerical renormalization group method. We clarify the competing influences of the electron-electron and electron-phonon interactions particularity at the different metal to insulator transitions. The Coulomb repulsion is found to dominate the behaviour in large parts of the metallic regime. By suppressing charge fluctuations, it effectively decouples electrons from phonons. The phonon propagator shows a characteristic softening near the metal to bipolaronic transition but there is very little softening on the approach to the Mott transition.Comment: 13 pages, 19 figure

    A new renormalization group approach for systems with strong electron correlation

    Full text link
    The anomalous low energy behaviour observed in metals with strong electron correlation, such as in the heavy fermion materials, is believed to arise from the scattering of the itinerant electrons with low energy spin fluctuations. In systems with magnetic impurities this scattering leads to the Kondo effect and a low energy renormalized energy scale, the Kondo temperature TKT_{\rm K}. It has been generally assumed that these low energy scales can only be accessed by a non-perturbative approach due to the strength of the local inter-electron interactions. Here we show that it is possible to circumvent this difficulty by first suppressing the spin fluctuations with a large magnetic field. As a first step field-dependent renormalized parameters are calculated using standard perturbation theory. A renormalized perturbation theory is then used to calculate the renormalized parameters for a reduced magnetic field strength. The process can be repeated and the flow of the renormalized parameters continued to zero magnetic field. We illustrate the viability of this approach for the single impurity Anderson model. The results for the renormalized parameters, which flow as a function of magnetic field, can be checked with those from numerical renormalization group and Bethe ansatz calculations.Comment: 14 pages, 15 figure
    corecore