803 research outputs found

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping

    Get PDF
    We have investigated antidot lattices, which were prepared on exfoliated graphene single layers via electron-beam lithography and ion etching, by means of scanning Raman spectroscopy. The peak positions, peak widths and intensities of the characteristic phonon modes of the carbon lattice have been studied systematically in a series of samples. In the patterned samples, we found a systematic stiffening of the G band mode, accompanied by a line narrowing, while the 2D mode energies are found to be linearly correlated with the G mode energies. We interpret this as evidence for p-type doping of the nanostructured graphene

    Distinct illusory own-body perceptions caused by damage to posterior insula and extrastriate cortex

    Get PDF
    Recent research in cognitive neuroscience using virtual reality, robotic technology and brain imaging has linked self-consciousness to the processing and integration of multisensory bodily signals. This work on bodily self-consciousness has implicated the temporo-parietal, premotor and extrastriate cortex and partly originated in work on neurological patients with different disorders of bodily self-consciousness. One class of such disorders is autoscopic phenomena, which are defined as illusory own-body perceptions, during which patients experience the visual illusory reduplication of their own body in extrapersonal space. Three main forms of autoscopic phenomena have been defined. During autoscopic hallucinations, a second own body is seen without any changes in bodily self-consciousness. During out-of-body experiences, the second own body is seen from an elevated perspective and location associated with disembodiment. During heautoscopy, subjects report strong self-identification with the second own body, often associated with the experience of existing at and perceiving the world from two places at the same time. Although it has been proposed that each autoscopic phenomenon is associated with different impairments of bodily self-consciousness, past research on neurological patients and the development of experimental paradigms for the study of bodily self-consciousness has focused on out-of-body experiences and the association with temporo-parietal cortex. Here, we performed quantitative lesion analysis in the—to date—largest group of patients with autoscopic hallucination and heautoscopy and compared the location of brain damage with those of control patients suffering from complex visual hallucinations. We found that heautoscopy was associated with lesions to the left posterior insula, and that autoscopic hallucinations were associated with damage to the right occipital cortex. Autoscopic hallucination and heautoscopy were further associated with distinct symptoms and deficits. The present data suggest that the autoscopic hallucination is a visuo-somatosensory deficit implicating extrastriate cortex and is, despite the visual hallucination of the own body, not associated with major deficits in bodily self-consciousness. Based on the symptoms and deficits in patients with heautoscopy and the implication of the left posterior insula, we suggest that abnormal bodily self-consciousness during heautoscopy is caused by a breakdown of self-other discrimination regarding affective somatosensory experience due to a disintegration of visuo-somatosensory signals with emotional (and/or interoceptive) bodily signals. These brain mechanisms are distinct from those described for out-of-body experiences. The present data extend previous models of autoscopic phenomena and provide clinical evidence for the importance of emotional and interoceptive signal processing in the posterior insula in relation to bodily self-consciousnes

    Turning body and self inside out: visualized heartbeats alter bodily self-consciousness and tactile perception

    Get PDF
    Prominent theories highlight the importance of bodily perception for self-consciousness, but it is currently not known whether bodily perception is based on interoceptive or exteroceptive signals or on integrated signals from these anatomically distinct systems. In the research reported here, we combined both types of signals by surreptitiously providing participants with visual exteroceptive information about their heartbeat: A real-time video image of a periodically illuminated silhouette outlined participants' (projected, "virtual") bodies and flashed in synchrony with their heartbeats. We investigated whether these "cardio-visual" signals could modulate bodily self-consciousness and tactile perception. We report two main findings. First, synchronous cardio-visual signals increased self-identification with and self-location toward the virtual body, and second, they altered the perception of tactile stimuli applied to participants' backs so that touch was mislocalized toward the virtual body. We argue that the integration of signals from the inside and the outside of the human body is a fundamental neurobiological process underlying self-consciousness

    Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.)

    Get PDF
    El presente trabajo muestra el aislamiento y la caracterización de bacterias del género Bacillus provenientes de la rizosfera del cultivo del arroz (Oryza sativa L.) variedad J-104 utilizando el modelo microcosmos. Se realizaron además aislamientos directos del suelo que se encontraba cultivado con la variedad INCA LP-5. Se llevó a cabo la caracterización fisiológica de 13 aislados en cuanto a la producción de compuestos indólicos, la determinación de antagonismo frente a hongos fitopatógenos Del arroz (Alternaria solani, Pyricularia grisea, Fusarium sp. y Curvularia sp.), la capacidad de solubilización de fosfatos y la determinación cualitativa de la fijación de nitrógeno. Teniendo en cuenta los resultados obtenidos se seleccionaron a través de un análisis de conglomerado (cluster), los aislados más promisorios para su identificación utilizando las pruebas morfológicas, tintoriales y bioquímicas propuestas por el Manual de Bergey y la secuenciación del ADN ribosómico 16S
    corecore