727 research outputs found
Archéologie spatiale de la Côte d'Azur
La Côte d’Azur est le résultat d’une inversion typiquement méditerranéenne dans les hiérarchies spatiales et mentales entre littoral et intérieur
Facet ridge end points in crystal shapes
Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are
generically complex. We study the body-centered solid-on-solid model on a
square lattice with an enhanced uniaxial interaction range to test the
stability of the so-called stochastic FRE point where the model maps exactly
onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is
simple. The latter is unstable. The generic ECS contains first-order ridges
extending into the rounded part of the ECS, where two rough orientations
coexist and first-order faceted to rough boundaries terminating in
Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe
The phase diagram of the lattice Calogero-Sutherland model
We introduce a {\it lattice} version of the Calogero Sutherland model adapted
to describe pairwise interacting steps with discrete positions on a
vicinal surface. The configurational free energy is obtained within a transfer
matrix method. The full phase diagram for attractive and for repulsive
interaction is deduced. For attraction, critical temperatures of faceting
transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900
Applicability of the Broken-Bond Rule to the Surface Energy of the fcc Metals
We apply the Green's function based full-potential screened
Korringa-Kohn-Rostoker method in conjunction with the local density
approximation to study the surface energies of the noble and the fcc transition
and metals. The orientation dependence of the transition metal surface
energies can be well described taking into account only the broken bonds
between first neighbors, quite analogous to the behavior we recently found for
the noble metals [see cond-mat/0105207]. The (111) and (100) surfaces of the
metals show a jellium like behavior but for the more open surfaces we find
again the noble metals behavior but with larger deviation from the broken-bond
rule compared to the transition metals. Finally we show that the use of the
full potential is crucial to obtain accurate surface energy anisotropy ratios
for the vicinal surfaces.Comment: 13 pages, 5 figures, to appear in July in Surface Science Vol. 511,1
(2002
The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts: MYOSIN-X TRANSPORT OF VE-CADHERIN ALONG FILOPODIA
International audienceVascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VEcadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
A mean field theory is developed for the calculation of the surface free
energy of the staggered BCSOS, (or six vertex) model as function of the surface
orientation and of temperature. The model approximately describes surfaces of
crystals with nearest neighbor attractions and next nearest neighbor
repulsions. The mean field free energy is calculated by expressing the model in
terms of interacting directed walks on a lattice. The resulting equilibrium
shape is very rich with facet boundaries and boundaries between reconstructed
and unreconstructed regions which can be either sharp (first order) or smooth
(continuous). In addition there are tricritical points where a smooth boundary
changes into a sharp one and triple points where three sharp boundaries meet.
Finally our numerical results strongly suggest the existence of conical points,
at which tangent planes of a finite range of orientations all intersect each
other. The thermal evolution of the equilibrium shape in this model shows
strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include
Equilibrium crystal shapes in the Potts model
The three-dimensional -state Potts model, forced into coexistence by
fixing the density of one state, is studied for , 3, 4, and 6. As a
function of temperature and number of states, we studied the resulting
equilibrium droplet shapes. A theoretical discussion is given of the interface
properties at large values of . We found a roughening transition for each of
the numbers of states we studied, at temperatures that decrease with increasing
, but increase when measured as a fraction of the melting temperature. We
also found equilibrium shapes closely approaching a sphere near the melting
point, even though the three-dimensional Potts model with three or more states
does not have a phase transition with a diverging length scale at the melting
point.Comment: 6 pages, 3 figures, submitted to PR
High Precision Renormalization Group Study of the Roughening Transition
We confirm the Kosterlitz-Thouless scenario of the roughening transition for
three different Solid-On-Solid models: the Discrete Gaussian model, the
Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with
standard (cosine) action. The method is based on a matching of the
renormalization group flow of the candidate models with the flow of a bona fide
KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are
performed using efficient cluster algorithms. We obtain high precision
estimates for the critical couplings and other non-universal quantities. For
the XY model with cosine action our critical coupling estimate is
. For the roughening coupling of the Discrete Gaussian
and the Absolute-Value-Solid-On-Solid model we find and
, respectively.Comment: 46 pages, PostScript file (compressed and uuencoded), preprints
CERN-TH.7182/94, HU-RI-2/94, and MS-TPI-94-
- …
