727 research outputs found

    Archéologie spatiale de la Côte d'Azur

    Get PDF
    La Côte d’Azur est le résultat d’une inversion typiquement méditerranéenne dans les hiérarchies spatiales et mentales entre littoral et intérieur

    Facet ridge end points in crystal shapes

    Full text link
    Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are generically complex. We study the body-centered solid-on-solid model on a square lattice with an enhanced uniaxial interaction range to test the stability of the so-called stochastic FRE point where the model maps exactly onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is simple. The latter is unstable. The generic ECS contains first-order ridges extending into the rounded part of the ECS, where two rough orientations coexist and first-order faceted to rough boundaries terminating in Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe

    The phase diagram of the lattice Calogero-Sutherland model

    Full text link
    We introduce a {\it lattice} version of the Calogero Sutherland model adapted to describe 1/d21/d^2 pairwise interacting steps with discrete positions on a vicinal surface. The configurational free energy is obtained within a transfer matrix method. The full phase diagram for attractive and for repulsive interaction is deduced. For attraction, critical temperatures of faceting transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900

    Applicability of the Broken-Bond Rule to the Surface Energy of the fcc Metals

    Full text link
    We apply the Green's function based full-potential screened Korringa-Kohn-Rostoker method in conjunction with the local density approximation to study the surface energies of the noble and the fcc transition and spsp metals. The orientation dependence of the transition metal surface energies can be well described taking into account only the broken bonds between first neighbors, quite analogous to the behavior we recently found for the noble metals [see cond-mat/0105207]. The (111) and (100) surfaces of the spsp metals show a jellium like behavior but for the more open surfaces we find again the noble metals behavior but with larger deviation from the broken-bond rule compared to the transition metals. Finally we show that the use of the full potential is crucial to obtain accurate surface energy anisotropy ratios for the vicinal surfaces.Comment: 13 pages, 5 figures, to appear in July in Surface Science Vol. 511,1 (2002

    The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts: MYOSIN-X TRANSPORT OF VE-CADHERIN ALONG FILOPODIA

    Get PDF
    International audienceVascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VEcadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings

    Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type

    Full text link
    A mean field theory is developed for the calculation of the surface free energy of the staggered BCSOS, (or six vertex) model as function of the surface orientation and of temperature. The model approximately describes surfaces of crystals with nearest neighbor attractions and next nearest neighbor repulsions. The mean field free energy is calculated by expressing the model in terms of interacting directed walks on a lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between reconstructed and unreconstructed regions which can be either sharp (first order) or smooth (continuous). In addition there are tricritical points where a smooth boundary changes into a sharp one and triple points where three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the equilibrium shape in this model shows strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include

    Equilibrium crystal shapes in the Potts model

    Full text link
    The three-dimensional qq-state Potts model, forced into coexistence by fixing the density of one state, is studied for q=2q=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values of qq. We found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with increasing qq, but increase when measured as a fraction of the melting temperature. We also found equilibrium shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model with three or more states does not have a phase transition with a diverging length scale at the melting point.Comment: 6 pages, 3 figures, submitted to PR

    High Precision Renormalization Group Study of the Roughening Transition

    Full text link
    We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is βRXY=1.1197(5)\beta_R^{XY}=1.1197(5). For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find KRDG=0.6645(6)K_R^{DG}=0.6645(6) and KRASOS=0.8061(3)K_R^{ASOS}=0.8061(3), respectively.Comment: 46 pages, PostScript file (compressed and uuencoded), preprints CERN-TH.7182/94, HU-RI-2/94, and MS-TPI-94-
    corecore