3,228 research outputs found
Dark matter sterile neutrinos in stellar collapse: alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement
We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW)
active-sterile neutrino conversion in the
channel in the collapse of the iron core of a pre-supernova star. For values of
sterile neutrino rest mass and vacuum mixing angle
(specifically, ) which include those required for viable sterile neutrino
dark matter, our one-zone in-fall phase collapse calculations show a
significant reduction in core lepton fraction. This would result in a smaller
homologous core and therefore a smaller initial shock energy, disfavoring
successful shock re-heating and the prospects for an explosion. However, these
calculations also suggest that the MSW resonance energy can exhibit a minimum
located between the center and surface of the core. In turn, this suggests a
post-core-bounce mechanism to enhance neutrino transport and neutrino
luminosities at the core surface and thereby augment shock re-heating: (1)
scattering-induced or coherent MSW conversion occurs deep in
the core, at the first MSW resonance, where energies are large ( MeV); (2) the high energy stream outward at near light speed; (3)
they deposit their energy when they encounter the second MSW resonance
just below the proto-neutron star surface.Comment: 13 pages, 9 figure
Flavour violating bosonic squark decays at LHC
We study quark flavour violation (QFV) in the squark sector of the Minimal
Supersymmetric Standard Model (MSSM). We assume mixing between the second and
the third squark generations, i.e. sc_R-st_{L,R} mixing mixing. We focus on QFV
effects in bosonic squark decays, in particular on the decay into the lightest
Higgs boson h0, su_2 -> su_1 h0, where su_{1,2} are the lightest up-type
squarks. We show that the branching ratio of this QFV decay can be quite large
(up to 50 %) due to large QFV trilinear couplings, and large sc_R-st_{L, R} and
st_L-st_R mixing, despite the strong constraints on QFV from B meson data. This
can result in characteristic QFV final states with significant rates at LHC (14
TeV), such as pp -> gluino gluino X -> t + h0 + 3jets + Etmiss + X and pp ->
gluino gluino X -> t t (or tbar tbar) + h0 + 2jets + Etmiss + X. The QFV
bosonic squark decays can have an influence on the squark and gluino searches
at LHC.Comment: Figure 3 replaced, Section 4 revise
Universal threshold enhancement
By assuming certain analytic properties of the propagator, it is shown that
universal features of the spectral function including threshold enhancement
arise if a pole describing a particle at high temperature approaches in the
complex energy plane the threshold position of its two-body decay with the
variation of T. The case is considered, when one can disregard any other decay
processes. The quality of the proposed description is demonstrated by comparing
it with the detailed large N solution of the linear sigma model around the
pole-threshold coincidence.Comment: 4 pages, 2 figure
- …
