773 research outputs found
Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
The nematode Caenorhabditis elegans, with information on neural connectivity,
three-dimensional position and cell linage provides a unique system for
understanding the development of neural networks. Although C. elegans has been
widely studied in the past, we present the first statistical study from a
developmental perspective, with findings that raise interesting suggestions on
the establishment of long-distance connections and network hubs. Here, we
analyze the neuro-development for temporal and spatial features, using birth
times of neurons and their three-dimensional positions. Comparisons of growth
in C. elegans with random spatial network growth highlight two findings
relevant to neural network development. First, most neurons which are linked by
long-distance connections are born around the same time and early on,
suggesting the possibility of early contact or interaction between connected
neurons during development. Second, early-born neurons are more highly
connected (tendency to form hubs) than later born neurons. This indicates that
the longer time frame available to them might underlie high connectivity. Both
outcomes are not observed for random connection formation. The study finds that
around one-third of electrically coupled long-range connections are late
forming, raising the question of what mechanisms are involved in ensuring their
accuracy, particularly in light of the extremely invariant connectivity
observed in C. elegans. In conclusion, the sequence of neural network
development highlights the possibility of early contact or interaction in
securing long-distance and high-degree connectivity
Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.
OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
Overcoming risk assessment limitations for potential fires in a multi-occupancy building
Decision-making under risk has been a key issue in systems with a potential for major losses such as
chemical process industries (Bhopal - 1984, Toulouse - 2001) or high occupancy buildings (World Trade
Center - 2001, Grenfell Tower - 2017). For the past decades, engineering disciplines have supported risk
management decision-making through the implementation of risk assessments using quantitative approaches.
The popularity of this approach relates to the quantitative definition of risk given by Kaplan in 1981, who
decomposed risk into a set of scenarios, probability of occurrence and consequences. Recently, research on
quantitative risk assessments (QRA) has reported key limitations on identifying the set of scenarios and
estimating their probability of occurrence. These limitations may lead to uncertainties of up to three orders of
magnitude that affect the QRA’s ability of delivering reliable information to stakeholders. This research uses
an alternative definition of risk and applies it to a case study of a multi-occupancy building in the event of a
fire. The proposed approach quantifies the maximum damage potential (MDP) of the system when all the
active safety measures are allowed to fail, even those with low failure frequencies. The system’s MDP is
compared to its maximum allowable damage (MAD), which is previously defined by the stakeholders. This
approach allows defining design modifications and operational rules aiding the development of the building’s
fire safety strategy. Finally, a comparison between the obtained results and a typical QRA is used to comment
on the suitability of the proposed approach when evaluating risk in complex systems
Aberrant iPSC-derived human astrocytes in Alzheimer's disease
The pathological potential of human astroglia in Alzheimer's disease (AD) was analysed in vitro using induced pluripotent stem cell (iPSC) technology. Here, we report development of a human iPSC-derived astrocyte model created from healthy individuals and patients with either early-onset familial AD (FAD) or the late-onset sporadic form of AD (SAD). Our chemically-defined and highly efficient model provides >95% homogeneous populations of human astrocytes within 30 days of differentiation from cortical neural progenitor cells (NPCs). All astrocytes expressed functional markers including; glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1), S100B and glutamine synthetase (GS) comparable to that of adult astrocytes in vivo. However, induced astrocytes derived from both SAD and FAD patients exhibit a pronounced pathological phenotype, with a significantly less complex morphological appearance, overall atrophic profiles, and abnormal localisation of key functional astroglial markers. Furthermore, NPCs derived from identical patients did not show any differences, therefore, validating that remodelled astroglia are not as a result of defective neuronal intermediates. This work not only presents a novel model to study the mechanisms of human astrocytes in vitro, but also provides an ideal platform for further interrogation of early astroglial cell-autonomous events in AD and the possibility of identification of novel therapeutic targets for the treatment of AD
Enhancing volunteer engagement to achieve desirable outcomes: what can non-profit employers do?
Abstract Engagement is a positive psychological state that is linked with a range of beneficial individual and organizational outcomes. However, the factors associated with volunteer engagement have rarely been examined. Data from 1064 volunteers of a wildlife charity in the United Kingdom revealed that both task- and emotion-oriented
organizational support were positively related to volunteer engagement, and volunteer engagement was positively related to volunteer happiness and perceived social worth and negatively related to intent to leave the voluntary organization.
Consistent with theory, engagement acted as a mediator between these factors. The implications for future research and the relevance of the findings for voluntary organizations are discussed
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles
[Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
