1,477 research outputs found
Search for Antineutrino Charged Current Coherent Pion Production at SciBooNE
The SciBooNE experiment (Fermilab) recently published results of a search for
charged current coherent pion production in neutrino mode: muon neutrinos
scattering on carbon. The results of this study are that no evidence for
coherent pion production is observed, and SciBooNE set 90% confidence level
upper limits on the cross section ratio of charged current coherent pion
production to the total charged current cross section. Recently proposed new
coherent pion models predict a production of charged current coherent pion
events just below the SciBooNE's upper limit. Motivated by this, we performed a
search for charged current coherent pion production using SciBooNE's collected
antineutrino data since antineutrino data are expected to be more sensitive to
look at coherent pion production than neutrino data. This paper describes
preliminary results of a search for antineutrino charged current coherent pion
production at the SciBooNE experiment.Comment: 6 pages to be appeared in the proceedings for NuInt09 proceeding
Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats
The protozoan parasite Toxoplasma gondii is prevalent worldwide and can infect a remarkably wide range of hosts despite
felids being the only definitive host. As cats play a major role in transmission to secondary mammalian hosts, the interaction
between cats and these hosts should be a major factor determining final prevalence in the secondary host. This study
investigates the prevalence of T. gondii in a natural population of Apodemus sylvaticus collected from an area with low cat
density (<2·5 cats/km2). A surprisingly high prevalence of 40·78% (95% CI: 34·07%–47·79%) was observed despite this.
A comparable level of prevalence was observed in a previously published study using the same approaches where a
prevalence of 59% (95% CI: 50·13%–67·87%) was observed in a natural population of Mus domesticus from an area with high
cat density (>500 cats/km2). Detection of infected foetuses frompregnant dams in both populations suggests that congenital
transmission may enable persistence of infection in the absence of cats. The prevalences of the related parasite, Neospora
caninum were found to be low in both populations (A. sylvaticus: 3·39% (95% CI: 0·12%–6·66%); M. domesticus: 3·08%
(95% CI: 0·11%–6·05%)). These results suggest that cat density may have a lower than expected effect on final prevalence in
these ecosystems
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
“Belt and Road” project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
Evidence for high levels of vertical transmission in Toxoplasma gondii
Toxoplasma gondii is a highly ubiquitous and prevalent parasite. Despite the cat being the only definitive host, it is found in almost all geographical areas and warm blooded animals. Three routes of transmission are recognised: ingestion of oocysts shed by the cat, carnivory and congenital transmission. In natural populations, it is difficult to establish the relative importance of these routes. This paper reviews recent work in our laboratory which suggests that congenital transmission may be much more important than previously thought. Using PCR detection of the parasite, studies in sheep show that congenital transmission may occur in as many as 66% of pregnancies. Furthermore, in families of sheep on the same farm, exposed to the same sources of oocysts, significant divergent prevalences of Toxoplasma infection and abortion are found between different families. The data suggest that breeding from infected ewes increases the risk of subsequent abortion and infection in lambs. Congenital transmission rates in a natural population of mice were found to be 75%. Interestingly, congenital transmission rates in humans were measured at 19.8%. The results presented in these studies differ from those of other published studies and suggest that vertical transmission may be much more important than previously thought
Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci
African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics
Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls
Clinical adoption of human genome sequencing requires methods that output genotypes with known accuracy at millions or billions of positions across a genome. Because of substantial discordance among calls made by existing sequencing methods and algorithms, there is a need for a highly accurate set of genotypes across a genome that can be used as a benchmark. Here we present methods to make high-confidence, single-nucleotide polymorphism (SNP), indel and homozygous reference genotype calls for NA12878, the pilot genome for the Genome in a Bottle Consortium. We minimize bias toward any method by integrating and arbitrating between 14 data sets from five sequencing technologies, seven read mappers and three variant callers. We identify regions for which no confident genotype call could be made, and classify them into different categories based on reasons for uncertainty. Our genotype calls are publicly available on the Genome Comparison and Analytic Testing website to enable real-time benchmarking of any method
Concurrence in Disordered Systems
Quantum systems exist at finite temperatures and are likely to be disordered
to some level. Since applications of quantum information often rely on
entanglement, we require methods which allow entanglement measures to be
calculated in the presence of disorder at non-zero temperatures. We demonstrate
how the disorder averaged concurrence can be calculated using thermal many-body
perturbation theory. Our technique can also be applied to other entanglement
measures. To illustrate, we find the disorder averaged concurrence of an XX
spin chain. We find that concurrence can be increased by disorder in some
parameter regimes.Comment: 14 pages, 5 figure
Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory
There is currently a great need for solid state lasers that emit in the
infrared, as this is the operating wavelength regime for applications in
telecommunications. Existing --conjugated polymers all emit in the visible
or ultraviolet, and whether or not --conjugated polymers that emit in the
infrared can be designed is an interesting challenge. On the one hand, the
excited state ordering in trans-polyacetylene, the --conjugated polymer
with relatively small optical gap, is not conducive to light emission because
of electron-electron interaction effects. On the other hand, excited state
ordering opposite to that in trans-polyacetylene is usually obtained by
chemical modification that increases the effective bond-alternation, which in
turn increases the optical gap. We develop a theory of electron correlation
effects in a model -conjugated polymer that is obtained by replacing the
hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and
show that the effective on-site correlation in this system is smaller than the
bare correlation in the unsubstituted system. An optical gap in the infrared as
well as excited state ordering conducive to light emission is thereby predicted
upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1
<p><b>Background:</b> The three sub-species of <i>Trypanosoma brucei</i> are important pathogens of sub-Saharan Africa. <i>T. b. brucei</i> is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. <i>T. b. rhodesiense</i> and <i>T. b. gambiense</i> are able to resist lysis by TLF. There are two distinct sub-groups of <i>T. b. gambiense</i> that differ genetically and by human serum resistance phenotypes. Group 1 <i>T. b. gambiense</i> have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 <i>T. b. gambiense</i> are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (<i>HpHbR</i>)) gene. Here we investigate if this is also true in group 2 parasites.</p>
<p><b>Methodology:</b> Isogenic resistant and sensitive group 2 <i>T. b. gambiense</i> were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the <i>HpHbR</i> gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to <i>T. b. brucei</i>. Both resistant and sensitive group 2, as well as group 1 <i>T. b. gambiense</i>, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.</p>
<p><b>Conclusions:</b> Our data indicate that, despite group 1 <i>T. b. gambiense</i> avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 <i>T. b. gambiense</i> is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 <i>T. b. gambiense</i> variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of <i>HpHbR</i>. Thus there are differences in the mechanism of human serum resistance between <i>T. b. gambiense</i> groups 1 and 2.</p>
- …
