865 research outputs found

    CO oxidation on perovskite-type LaCoO3 synthesized using ethylene glycol and citric acid

    Get PDF
    In order to synthesize perovskite-type LaCoO3 with good surface crystallinity, the gel prepared by adding both ethylene glycol (EG) and citric acid (CA) to the aqueous solution of La(NO3)3 center dot 6H(2)O and Co(NO3)(2) center dot 6H(2)O was fired at 600 degrees C in air for 3 h. The transmission electron microscopy (TEM) observation indicated that the particles of LaCoO3 tended to have a uniform shape at EG/CA = 4. Although, the specific surface area of LaCoO3 synthesized using both EG and CA was slightly smaller than that of LaCoO3 synthesized using only CA, the catalytic activity of CO oxidation became higher by adding EG

    Strong Suppression of Coherence Effect and Appearance of Pseudogap in Layered Nitride Superconductor Li_xZrNCl: ^91Zr- and ^15N- NMR Studies

    Get PDF
    We present NMR measurements of the layered nitride superconductor Li_xZrNCl. The nuclear spin-lattice relaxation rate, 1/T_1, shows that the coherence peak is strongly suppressed in Li_xZrNCl in contrast to conventional BCS superconductors. In the lightly-doped region close to the insulating state, the system shows a gap-like behavior, i.e., pseudogap, that is characterized by a reduction in the magnitude of the Knight shift and 1/T_1T. A higher superconducting (SC) transition temperature, T_c, is achieved by coexisting with the pseudogap state. These unusual behaviors, which deviate from the ordinary BCS framework, are the key ingredients to understanding the SC mechanism of Li_xZrNCl.Comment: 5 pages, 5 figure

    Online Embedding Multi-Scale CLIP Features into 3D Maps

    Full text link
    This study introduces a novel approach to online embedding of multi-scale CLIP (Contrastive Language-Image Pre-Training) features into 3D maps. By harnessing CLIP, this methodology surpasses the constraints of conventional vocabulary-limited methods and enables the incorporation of semantic information into the resultant maps. While recent approaches have explored the embedding of multi-modal features in maps, they often impose significant computational costs, lacking practicality for exploring unfamiliar environments in real time. Our approach tackles these challenges by efficiently computing and embedding multi-scale CLIP features, thereby facilitating the exploration of unfamiliar environments through real-time map generation. Moreover, the embedding CLIP features into the resultant maps makes offline retrieval via linguistic queries feasible. In essence, our approach simultaneously achieves real-time object search and mapping of unfamiliar environments. Additionally, we propose a zero-shot object-goal navigation system based on our mapping approach, and we validate its efficacy through object-goal navigation, offline object retrieval, and multi-object-goal navigation in both simulated environments and real robot experiments. The findings demonstrate that our method not only exhibits swifter performance than state-of-the-art mapping methods but also surpasses them in terms of the success rate of object-goal navigation tasks.Comment: 8 pages, 7 figure

    Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chaperonins are important in living systems because they play a role in the folding of proteins. Earlier comprehensive analyses identified substrate proteins for which folding requires the chaperonin GroEL/GroES (GroE) in <it>Escherichia coli</it>, and they revealed that many chaperonin substrates are metabolic enzymes. This result implies the importance of chaperonins in metabolism. However, the relationship between chaperonins and metabolism is still unclear.</p> <p>Results</p> <p>We investigated the distribution of chaperonin substrate enzymes in the metabolic network using network analysis techniques as a first step towards revealing this relationship, and found that as chaperonin requirement increases, substrate enzymes are more laterally distributed in the metabolic. In addition, comparative genome analysis showed that the chaperonin-dependent substrates were less conserved, suggesting that these substrates were acquired later on in evolutionary history.</p> <p>Conclusions</p> <p>This result implies the expansion of metabolic networks due to this chaperonin, and it supports the existing hypothesis of acceleration of evolution by chaperonins. The distribution of chaperonin substrate enzymes in the metabolic network is inexplicable because it does not seem to be associated with individual protein features such as protein abundance, which has been observed characteristically in chaperonin substrates in previous works. However, it becomes clear by considering this expansion process due to chaperonin. This finding provides new insights into metabolic evolution and the roles of chaperonins in living systems.</p

    CLIP feature-based randomized control using images and text for multiple tasks and robots

    Full text link
    This study presents a control framework leveraging vision language models (VLMs) for multiple tasks and robots. Notably, existing control methods using VLMs have achieved high performance in various tasks and robots in the training environment. However, these methods incur high costs for learning control policies for tasks and robots other than those in the training environment. Considering the application of industrial and household robots, learning in novel environments where robots are introduced is challenging. To address this issue, we propose a control framework that does not require learning control policies. Our framework combines the vision-language CLIP model with a randomized control. CLIP computes the similarity between images and texts by embedding them in the feature space. This study employs CLIP to compute the similarity between camera images and text representing the target state. In our method, the robot is controlled by a randomized controller that simultaneously explores and increases the similarity gradients. Moreover, we fine-tune the CLIP to improve the performance of the proposed method. Consequently, we confirm the effectiveness of our approach through a multitask simulation and a real robot experiment using a two-wheeled robot and robot arm.Comment: 13 pages, 5 figure
    corecore