414 research outputs found
Bundles of Interacting Strings in Two Dimensions
Bundles of strings which interact via short-ranged pair potentials are
studied in two dimensions. The corresponding transfer matrix problem is solved
analytically for arbitrary string number N by Bethe ansatz methods. Bundles
consisting of N identical strings exhibit a unique unbinding transition. If the
string bundle interacts with a hard wall, the bundle may unbind from the wall
via a unique transition or a sequence of N successive transitions. In all
cases, the critical exponents are independent of N and the density profile of
the strings exhibits a scaling form that approaches a mean-field profile in the
limit of large N.Comment: 8 pages (latex) with two figure
Fluctuation Pressure of a Stack of Membranes
We calculate the universal pressure constants of a stack of N membranes
between walls by strong-coupling theory. The results are in very good agreement
with values from Monte-Carlo simulations.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of
paper also at http://www.physik.fu-berlin.de/~kleinert/31
Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers
We study experimentally a coiling instability of cylindrical multilamellar
stacks of phospholipid membranes, induced by polymers with hydrophobic anchors
grafted along their hydrophilic backbone. Our system is unique in that coils
form in the absence of both twist and adhesion. We interpret our experimental
results in terms of a model in which local membrane curvature and polymer
concentration are coupled. The model predicts the occurrence of maximally tight
coils above a threshold polymer occupancy. A proper comparison between the
model and experiment involved imaging of projections from simulated coiled
tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure
Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size
We identify a class of composite membranes: fluid bilayers coupled to an
elastic meshwork, that are such that the meshwork's energy is a function
\textit{not} of the real microscopic membrane area ,
but of a \textit{smoothed} membrane's area , which corresponds to the
area of the membrane coarse-grained at the mesh size . We show that the
meshwork modifies the membrane tension both below and above the scale
, inducing a tension-jump . The
predictions of our model account for the fluctuation spectrum of red blood
cells membranes coupled to their cytoskeleton. Our results indicate that the
cytoskeleton might be under extensional stress, which would provide a means to
regulate available membrane area. We also predict an observable tension jump
for membranes decorated with polymer "brushes"
Interactions between proteins bound to biomembranes
We study a physical model for the interaction between general inclusions
bound to fluid membranes that possess finite tension, as well as the usual
bending rigidity. We are motivated by an interest in proteins bound to cell
membranes that apply forces to these membranes, due to either entropic or
direct chemical interactions. We find an exact analytic solution for the
repulsive interaction between two similar circularly symmetric inclusions. This
repulsion extends over length scales of order tens of nanometers, and contrasts
with the membrane-mediated contact attraction for similar inclusions on
tensionless membranes. For non circularly symmetric inclusions we study the
small, algebraically long-ranged, attractive contribution to the force that
arises. We discuss the relevance of our results to biological phenomena, such
as the budding of caveolae from cell membranes and the striations that are
observed on their coats.Comment: 22 pages, 2 figure
Neutral and Charged Polymers at Interfaces
Chain-like macromolecules (polymers) show characteristic adsorption
properties due to their flexibility and internal degrees of freedom, when
attracted to surfaces and interfaces. In this review we discuss concepts and
features that are relevant to the adsorption of neutral and charged polymers at
equilibrium, including the type of polymer/surface interaction, the solvent
quality, the characteristics of the surface, and the polymer structure. We pay
special attention to the case of charged polymers (polyelectrolytes) that have
a special importance due to their water solubility. We present a summary of
recent progress in this rapidly evolving field. Because many experimental
studies are performed with rather stiff biopolymers, we discuss in detail the
case of semi-flexible polymers in addition to flexible ones. We first review
the behavior of neutral and charged chains in solution. Then, the adsorption of
a single polymer chain is considered. Next, the adsorption and depletion
processes in the many-chain case are reviewed. Profiles, changes in the surface
tension and polymer surface excess are presented. Mean-field and corrections
due to fluctuations and lateral correlations are discussed. The force of
interaction between two adsorbed layers, which is important in understanding
colloidal stability, is characterized. The behavior of grafted polymers is also
reviewed, both for neutral and charged polymer brushes.Comment: a review: 130 pages, 30 ps figures; final form, added reference
Zwischen Text und Leser Wege zur Zukunft der Kognitiven Literaturwissenschaft
Sophia Wege: Wahrnehmung, Wiederholung, Vertikalität. Zur Theorie und Praxis der Kognitiven Literaturwissenschaft. Bielefeld: Aisthesis 2013. 532 S. EUR (D) 48,- ISBN 978-3-89528-953-
Reliability of species detection in 16S microbiome analysis: Comparison of five widely used pipelines and recommendations for a more standardized approach
The use of NGS-based testing of the bacterial microbiota is often impeded by inconsistent or non-reproducible results, especially when applying different analysis pipelines and reference databases. We investigated five frequently used software packages by submitting the same monobacterial datasets to them, representing the V1-2 and the V3-4 regions of the 16S-rRNA gene of 26 well characterized strains, which were sequenced by the Ion Torrent™ GeneStudio S5 system. The results obtained were divergent and calculations of relative abundance did not yield the expected 100%. We investigated these inconsistencies and were able to attribute them to failures either of the pipelines themselves or of the reference databases they rely on. On the basis of these findings, we recommend certain standards which should help to render microbiome testing more consistent and reproducible, and thus useful in clinical practice
- …
