398 research outputs found

    Periodicity of SNP distribution around transcription start sites

    Get PDF
    BACKGROUND: Several millions single nucleotide polymorphisms (SNPs) have already been collected and deposited in public databases and these are important resources not only for use as markers to identify disease-associated genes, but also to understand the mechanisms that underlie the genome diversification. RESULTS: A spectrum analysis of SNP density distribution in the genomic regions around transcription start sites (TSSs) revealed a remarkable periodicity of 146 nucleotides. This periodicity was observed in the regions that were associated with CpG islands (CGIs), but not in the regions without CpG islands (nonCGIs). An analysis of the sequence divergence of the same genomic regions between humans and chimpanzees also revealed a similar periodical pattern in CGI. The occurrences of any mono- or di-nucleotide sequences in these regions did not reveal such a periodicity, thus indicating that an interpretation of this periodicity solely based on the sequence-dependent susceptibility to mutation is highly unlikely. CONCLUSION: The periodical patterns of nucleotide variability suggest the location of nucleosomes that are phased at TSS, and can be viewed as the genetic footprint of the chromatin state that has been maintained throughout mammalian evolutionary history. The results suggest the possible involvement of the nucleosome structure in the promoter function, and also a fundamental functional/structural difference between the two promoter classes, i.e., those with and without CGIs

    Evaluation of Haplotype Inference Using Definitive Haplotype Data Obtained from Complete Hydatidiform Moles, and Its Significance for the Analyses of Positively Selected Regions

    Get PDF
    The haplotype map constructed by the HapMap Project is a valuable resource in the genetic studies of disease genes, population structure, and evolution. In the Project, Caucasian and African haplotypes are fairly accurately inferred, based mainly on the rules of Mendelian inheritance using the genotypes of trios. However, the Asian haplotypes are inferred from the genotypes of unrelated individuals based on population genetics, and are less accurate. Thus, the effects of this inaccuracy on downstream analyses needs to be assessed. We determined true Japanese haplotypes by genotyping 100 complete hydatidiform moles (CHM), each carrying a genome derived from a single sperm, using Affymetrix 500 K Arrays. We then assessed how inferred haplotypes can differ from true haplotypes, by phasing pseudo-individualized true haplotypes using the programs PHASE, fastPHASE, and Beagle. We found that, at various genomic regions, especially the MHC locus, the expansion of extended haplotype homozygosity (EHH), which is a measure of positive selection, is obscured when inferred Asian haplotype data is used to detect the expansion. We then mapped the genome using a new statistic, XDiHH, which directly detects the difference between the true and inferred haplotypes, in the determination of EHH expansion. We also show that the true haplotype data presented here is useful to assess and improve the accuracy of phasing of Asian genotypes

    Study of superconductivity of very thin FeSe1xTex\mathrm{FeSe}_{1-x}\mathrm{Te}_x films investigated by microwave complex conductivity measurements

    Full text link
    Complex conductivity measurements spanning the entire temperature range, including the vicinity of TcT_c, were conducted on systematically varied FeSe1x_{1-x}Tex_x (xx = 0 - 0.5) very thin films. By applying a novel cavity measurement technique employing microwave electric fields parallel to FeSe1x_{1-x}Tex_x films, we observed distinct temperature-dependent alterations in superfluid fraction and quasiparticle scattering rate at the nematic boundary. These changes in the nematic boundary suggests variations in the superconducting gap structure between samples in the nematic and non-nematic phase. Moreover, fluctuation is visible up to 1.2 TcT_c irrespective of nematic order, consistent with large superconducting fluctuations in iron chalcogenide superconductors reported previously in [H. Takahashi et al\textit{et al}, Phys. Rev. B 99, 060503(R) (2019)] and [F. Nabeshima et al\textit{et al}, Phys. Rev. B 97, 024504(R) (2018)]

    Genome-wide association study of individual differences of human lymphocyte profiles using large-scale cytometry data

    Get PDF
    Human immune systems are very complex, and the basis for individual differences in immune phenotypes is largely unclear. One reason is that the phenotype of the immune system is so complex that it is very difficult to describe its features and quantify differences between samples. To identify the genetic factors that cause individual differences in whole lymphocyte profiles and their changes after vaccination without having to rely on biological assumptions, we performed a genome-wide association study (GWAS), using cytometry data. Here, we applied computational analysis to the cytometry data of 301 people before receiving an influenza vaccine, and 1, 7, and 90 days after the vaccination to extract the feature statistics of the lymphocyte profiles in a nonparametric and data-driven manner. We analyzed two types of cytometry data: measurements of six markers for B cell classification and seven markers for T cell classification. The coordinate values calculated by this method can be treated as feature statistics of the lymphocyte profile. Next, we examined the genetic basis of individual differences in human immune phenotypes with a GWAS for the feature statistics, and we newly identified seven significant and 36 suggestive single-nucleotide polymorphisms associated with the individual differences in lymphocyte profiles and their change after vaccination. This study provides a new workflow for performing combined analyses of cytometry data and other types of genomics data

    PDK2 leads to cisplatin resistance through suppression of mitochondrial function in ovarian clear cell carcinoma

    Get PDF
    Ovarian clear cell carcinoma (CCC) exhibits an association with endometriosis, resistance to oxidative stress, and poor prognosis owing to its resistance to conventional platinum-based chemotherapy. A greater understanding of the molecular characteristics and pathogenesis of ovarian cancer subtypes may facilitate the development of targeted therapeutic strategies, though the mechanism of drug resistance in ovarian CCC has yet to be determined. In this study, we assessed exome sequencing data to identify new therapeutic targets of mitochondrial function in ovarian CCC because of the central role of mitochondria in redox homeostasis. Copy number analyses revealed that chromosome 17q21-24 (chr.17q21-24) amplification was associated with recurrence in ovarian CCC. Cell viability assays identified an association between cisplatin resistance and chr.17q21-24 amplification, and mitochondrion-related genes were enriched in patients with chr.17q21-24 amplification. Patients with high expression of pyruvate dehydrogenase kinase 2 (PDK2) had a worse prognosis than those with low PDK2 expression. Furthermore, inhibition of PDK2 synergistically enhanced cisplatin sensitivity by activating the electron transport chain and by increasing the production of mitochondrial reactive oxygen species. Mouse xenograft models showed that inhibition of PDK2 with cisplatin inhibited tumor growth. This evidence suggests that targeting mitochondrial metabolism and redox homeostasis is an attractive therapeutic strategy for improving drug sensitivity in ovarian CCC

    A Specification Method of Character String Region in Augmented Reality

    Get PDF
    This paper proposes a method to enter characters and/or character string in an augmented reality using a gesture motion. The proposed method detects the region of character string using the gesture motion. It consists of five phases; template generation, skin color detection, hand region detection, gesture motion extraction and designation of character string region. The template image consists of two fingers because a gesture is to take hold the tips of the first and second fingers. In the skin color detection, we extract the skin color on the basis of values in saturation by using threshold processing. The hand region is detected by calculating areas and detecting the area with the maximum value as a hand. The gesture motion is extracted using template matching. In order to show the effectiveness of the proposed method, we conduct experiments for character string specification

    Dysbiosis of the gut microbiota as a susceptibility factor for Kawasaki disease

    Get PDF
    IntroductionGut microbial imbalance (dysbiosis) has been reported in patients with acute Kawasaki disease (KD). However, no studies have analyzed the gut microbiota while focusing on susceptibility to KD. This study aimed to evaluate whether dysbiosis elevates susceptibility to KD by assessing children with a history of KD. MethodsFecal DNA was extracted from 26 children with a history of KD approximately 1 year prior (KD group, 12 boys; median age, 32.5 months; median time from onset, 11.5 months) and 57 age-matched healthy controls (HC group, 35 boys; median age, 36.0 months). 16S rRNA gene analysis was conducted with the Illumina Miseq instrument. Sequence reads were analyzed using QIIME2.ResultsFor alpha diversity, Faith’s phylogenetic diversity was significantly higher in the KD group. Regarding beta diversity, the two groups formed significantly different clusters based on Bray–Curtis dissimilarity. Comparing microbial composition at the genus level, the KD and HC groups were significantly different in the abundance of two genera with abundance over 1% after Benjamini–Hochberg false discovery rate correction for multiple comparisons. Compared with the HC group, the KD group had higher relative abundance of Ruminococcus gnavus group and lower relative abundance of Blautia. Discussion and conclusionRuminococcus gnavus group reportedly includes pro-inflammatory bacteria. In contrast, Blautia suppresses inflammation via butyrate production. In the predictive functional analysis, the proportion of gut microbiota involved in several pathways was lower in the KD group. Therefore, dysbiosis characterized by distinct microbial diversity and decreased abundance of Blautia in parallel with increased abundance of Ruminococcus gnavus group might be a susceptibility factor for KD
    corecore