2,669 research outputs found
Response of Bose gases in time-dependent optical superlattices
The dynamic response of ultracold Bose gases in one-dimensional optical
lattices and superlattices is investigated based on exact numerical time
evolutions in the framework of the Bose-Hubbard model. The system is excited by
a temporal amplitude modulation of the lattice potential, as it was done in
recent experiments. For regular lattice potentials, the dynamic signatures of
the superfluid to Mott-insulator transition are studied and the position and
the fine-structure of the resonances is explained by a linear response
analysis. Using direct simulations and the perturbative analysis it is shown
that in the presence of a two-colour superlattice the excitation spectrum
changes significantly when going from the homogeneous Mott-insulator the quasi
Bose-glass phase. A characteristic and experimentally accessible signature for
the quasi Bose-glass is the appearance of low-lying resonances and a
suppression of the dominant resonance of the Mott-insulator phase.Comment: 20 pages, 9 figures; added references and corrected typo
Review of the Laguerre-Gauss mode technology research program at Birmingham
Gravitational wave detectors from the advanced generation onwards are
expected to be limited in sensitivity by thermal noise of the optics, making
the reduction of this noise a key factor in the success of such detectors. A
proposed method for reducing the impact of this noise is to use higher-order
Laguerre-Gauss (LG) modes for the readout beam, as opposed to the currently
used fundamental mode. We present here a synopsis of the research program
undertaken by the University of Birmingham into the suitability of LG mode
technology for future gravitational wave detectors. This will cover our
previous and current work on this topic, from initial simulations and table-top
LG mode experiments up to implementation in a prototype scale suspended cavity
and high-power laser bench
Photon pressure induced test mass deformation in gravitational-wave detectors
A widely used assumption within the gravitational-wave community has so far
been that a test mass acts like a rigid body for frequencies in the detection
band, i.e. for frequencies far below the first internal resonance. In this
article we demonstrate that localized forces, applied for example by a photon
pressure actuator, can result in a non-negligible elastic deformation of the
test masses. For a photon pressure actuator setup used in the gravitational
wave detector GEO600 we measured that this effect modifies the standard
response function by 10% at 1 kHz and about 100% at 2.5 kHz
Bose-Fermi mixtures in 1D optical superlattices
The zero temperature phase diagram of binary boson-fermion mixtures in
two-colour superlattices is investigated. The eigenvalue problem associated
with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical
diagonalization technique, supplemented by an adaptive basis truncation scheme.
The physically motivated basis truncation allows to access larger systems in a
fully controlled and very flexible framework. Several experimentally relevant
observables, such as the matter-wave interference pattern and the
condensatefraction, are investigated in order to explore the rich phase
diagram. At symmetric half filling a phase similar to the Mott-insulating phase
in a commensurate purely bosonic system is identified and an analogy to recent
experiments is pointed out. Furthermore a phase of complete localization of the
bosonic species generated by the repulsive boson-fermion interaction is
identified. These localized condensates are of a different nature than the
genuine Bose-Einstein condensates in optical lattices.Comment: 18 pages, 9 figure
Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector
The upcoming European design study `Einstein gravitational-wave Telescope'
represents the first step towards a substantial, international effort for the
design of a third-generation interferometric gravitational wave detector. It is
generally believed that third-generation instruments might not be installed
into existing infrastructures but will provoke a new search for optimal
detector sites. Consequently, the detector design could be subject to fewer
constraints than the on-going design of the second generation instruments. In
particular, it will be prudent to investigate alternatives to the traditional
L-shaped Michelson interferometer. In this article, we review an old proposal
to use three Michelson interferometers in a triangular configuration. We use
this example of a triple Michelson interferometer to clarify the terminology
and will put this idea into the context of more recent research on
interferometer technologies. Furthermore the benefits of a triangular detector
will be used to motivate this design as a good starting point for a more
detailed research effort towards a third-generation gravitational wave
detector.Comment: Minor corrections to the main text and two additional appendices. 14
pages, 6 figure
On the formation of crack networks in high cycle fatigue
International audienceA probabilistic model based on an initial distribution of sites is proposed to describe different aspects of the formation, propagation and coalescence of crack networks in thermomechanical fatigue. The interaction between cracks is modeled by considering shielding effects
Optimal time-domain combination of the two calibrated output quadratures of GEO 600
GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
Stabilized jellium model and structural relaxation effects on the fragmentation energies of ionized silver clusters
Using the stabilized jellium model in two schemes of `relaxed' and `rigid',
we have calculated the dissociation energies and the fission barrier heights
for the binary fragmentations of singly-ionized and doubly-ionized Ag clusters.
In the calculations, we have assumed spherical geometries for the clusters.
Comparison of the fragmentation energies in the two schemes show differences
which are significant in some cases. This result reveals the advantages of the
relaxed SJM over the rigid SJM in dynamical processes such as fragmentation.
Comparing the relaxed SJM results and axperimental data on fragmentation
energies, it is possible to predict the sizes of the clusters just before their
fragmentations.Comment: 9 pages, 12 JPG figure
DC-readout of a signal-recycled gravitational wave detector
All first-generation large-scale gravitational wave detectors are operated at
the dark fringe and use a heterodyne readout employing radio frequency (RF)
modulation-demodulation techniques. However, the experience in the currently
running interferometers reveals several problems connected with a heterodyne
readout, of which phase noise of the RF modulation is the most serious one. A
homodyne detection scheme (DC-readout), using the highly stabilized and
filtered carrier light as local oscillator for the readout, is considered to be
a favourable alternative. Recently a DC-readout scheme was implemented on the
GEO 600 detector. We describe the results of first measurements and give a
comparison of the performance achieved with homodyne and heterodyne readout.
The implications of the combined use of DC-readout and signal-recycling are
considered.Comment: 11 page
The upgrade of GEO600
The German / British gravitational wave detector GEO 600 is in the process of
being upgraded. The upgrading process of GEO 600, called GEO-HF, will
concentrate on the improvement of the sensitivity for high frequency signals
and the demonstration of advanced technologies. In the years 2009 to 2011 the
detector will undergo a series of upgrade steps, which are described in this
paper.Comment: 9 pages, Amaldi 8 conference contributio
- …
