2,075 research outputs found

    Spherically symmetric model stellar atmospheres and limb darkening II: limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars

    Full text link
    Limb darkening is a fundamental ingredient for interpreting observations of planetary transits, eclipsing binaries, optical/infrared interferometry and microlensing events. However, this modeling traditionally represents limb darkening by a simple law having one or two coefficients that have been derived from plane-parallel model stellar atmospheres, which has been done by many researchers. More recently, researchers have gone beyond plane-parallel models and considered other geometries. We previously studied the limb-darkening coefficients from spherically symmetric and plane-parallel model stellar atmospheres for cool giant and supergiant stars, and in this investigation we apply the same techniques to FGK dwarf stars. We present limb-darkening coefficients, gravity-darkening coefficients and interferometric angular diameter corrections from Atlas and SAtlas model stellar atmospheres. We find that sphericity is important even for dwarf model atmospheres, leading to significant differences in the predicted coefficients.Comment: 9 pages, 8 figures. Accepted for publication in A&

    Indicators of Mass in Spherical Stellar Atmospheres

    Full text link
    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity (LL_\star), mass (MM_\star) and radius (RR_\star), and observations can now determine directly LL_\star and RR_\star. We computed spherical model atmospheres for red giants and for red supergiants holding LL_\star and RR_\star constant at characteristic values for each type of star but varying MM_\star, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the star's mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log10(g)\log_{10} (g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine the star's mass from currently achievable spectroscopy. The surface-brightness variations with mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.Comment: 24 pages, 9 figure

    Long-term polarization observations of Mira variable stars suggest asymmetric structures

    Full text link
    Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2 - 7 %, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.Comment: 2 pages, 1 figure, poster presented at IAU Symposium 301, Precision Asteroseismology, August 2013, Wroclaw, Polan

    Pulsation Period Change & Classical Cepheids: Probing the Details of Stellar Evolution

    Full text link
    Measurements of secular period change probe real-time stellar evolution of classical Cepheids making these measurements powerful constraints for stellar evolution models, especially when coupled with interferometric measurements. In this work, we present stellar evolution models and measured rates of period change for two Galactic Cepheids: Polaris and l Carinae, both important Cepheids for anchoring the Cepheid Leavitt law (period-luminosity relation). The combination of previously-measured parallaxes, interferometric angular diameters and rates of period change allows for predictions of Cepheid mass loss and stellar mass. Using the stellar evolution models, We find that l Car has a mass of about 9 MM_\odot consistent with stellar pulsation models, but is not undergoing enhanced stellar mass loss. Conversely, the rate of period change for Polaris requires including enhanced mass-loss rates. We discuss what these different results imply for Cepheid evolution and the mass-loss mechanism on the Cepheid instability strip.Comment: 2 pages, 1 figure, Poster presented at IAU307: New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, Editors: G. Meynet, C. Georgy, J.H. Groh & Ph. Ste

    Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-Darkening Directly from Model Stellar Atmospheres

    Get PDF
    The transit method, employed by MOST, \emph{Kepler}, and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, star spots, and other phenomena at the level of a few hundred parts-per-million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIV) using the plane-parallel \textsc{Atlas} and spherically symmetric \textsc{SAtlas} codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws lead to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50 -- 100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small they are systematic, and appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.Comment: 12 pages, 14 figures, accepted for publication in ApJ after revision

    Limb Darkening and Planetary Transits II: Intensity profile correction factors for a grid of model stellar atmospheres

    Full text link
    The ability to observe extrasolar planets transiting their stars has profoundly changed our understanding of these planetary systems. However, these measurements depend on how well we understand the properties of the host star, such as radius, luminosity and limb darkening. Traditionally, limb darkening is treated as a parameterization in the analysis, but these simple parameterizations are not accurate representations of actual center-to-limb intensity variations (CLIV) to the precision needed for interpreting these transit observations. This effect leads to systematic errors for the measured planetary radii and corresponding measured spectral features. We compute synthetic planetary transits using model stellar atmosphere CLIV and corresponding best-fit limb-darkening laws for a grid spherically symmetric model stellar atmospheres. From these light curves we measure the differences in flux as a function of the star's effective temperature, gravity, mass, and the inclination of the planet's orbit.Comment: 10 pages, 8 figures, submitted to AAS journals. Comments welcom
    corecore