2,784 research outputs found
Vectorlike Confinement at the LHC
We argue for the plausibility of a broad class of vectorlike confining gauge
theories at the TeV scale which interact with the Standard Model predominantly
via gauge interactions. These theories have a rich phenomenology at the LHC if
confinement occurs at the TeV scale, while ensuring negligible impact on
precision electroweak and flavor observables. Spin-1 bound states can be
resonantly produced via their mixing with Standard Model gauge bosons. The
resonances promptly decay to pseudo-Goldstone bosons, some of which promptly
decay to a pair of Standard Model gauge bosons, while others are charged and
stable on collider time scales. The diverse set of final states with little
background include multiple photons and leptons, missing energy, massive stable
charged particles and the possibility of highly displaced vertices in dilepton,
leptoquark or diquark decays. Among others, a novel experimental signature of
resonance reconstruction out of massive stable charged particles is
highlighted. Some of the long-lived states also constitute Dark Matter
candidates.Comment: 33 pages, 6 figures. v4: expanded discussion of Z_2 symmetry for
stability, one reference adde
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Multi-Photon Signals from Composite Models at LHC
We analyze the collider signals of composite scalars that emerge in certain
little Higgs models and models of vectorlike confinement. Similar to the decay
of the pion into photon pairs, these scalars mainly decay through
anomaly-induced interactions into electroweak gauge bosons, leading to a
distinct signal with three or more photons in the final state. We study the
standard model backgrounds for these signals, and find that the LHC can
discover these models over a large range of parameter space with 30 fb
at 14 TeV. An early discovery at the current 7 TeV run is possible in some
regions of parameter space. We also discuss possibilities to measure the spin
of the particles in the and decay channels.Comment: 18 pages, LaTe
Dijet resonances, widths and all that
The search for heavy resonances in the dijet channel is part of the on-going
physics programme, both at the Tevatron and at the LHC. Lower limits have been
placed on the masses of dijet resonances predicted in a wide variety of models.
However, across experiments, the search strategy assumes that the effect of the
new particles is well-approximated by on-shell production and subsequent decay
into a pair of jets. We examine the impact of off-shell effects on such
searches, particularly for strongly interacting resonances.Comment: Version published in JHE
Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology
We study the colored resonance production at the LHC in a most general
approach. We classify the possible colored resonances based on group theory
decomposition, and construct their effective interactions with light partons.
The production cross section from annihilation of valence quarks or gluons may
be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with
nominal couplings, leading to the largest production rates for new physics at
the TeV scale, and simplest event topology with dijet final states. We apply
the new dijet data from the LHC experiments to put bounds on various possible
colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The
formulation is readily applicable for future searches including other decay
modes.Comment: 29 pages, 9 figures. References updated and additional K-factors
include
RG-improved single-particle inclusive cross sections and forward-backward asymmetry in production at hadron colliders
We use techniques from soft-collinear effective theory (SCET) to derive
renormalization-group improved predictions for single-particle inclusive (1PI)
observables in top-quark pair production at hadron colliders. In particular, we
study the top-quark transverse-momentum and rapidity distributions, the
forward-backward asymmetry at the Tevatron, and the total cross section at
NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed
order. We also perform a detailed analysis of power corrections to the leading
terms in the threshold expansion of the partonic hard-scattering kernels. We
conclude that, although the threshold expansion in 1PI kinematics is
susceptible to numerically significant power corrections, its predictions for
the total cross section are in good agreement with those obtained by
integrating the top-pair invariant-mass distribution in pair invariant-mass
kinematics, as long as a certain set of subleading terms appearing naturally
within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table
Flavor Physics in an SO(10) Grand Unified Model
In supersymmetric grand-unified models, the lepton mixing matrix can possibly
affect flavor-changing transitions in the quark sector. We present a detailed
analysis of a model proposed by Chang, Masiero and Murayama, in which the
near-maximal atmospheric neutrino mixing angle governs large new b -> s
transitions. Relating the supersymmetric low-energy parameters to seven new
parameters of this SO(10) GUT model, we perform a correlated study of several
flavor-changing neutral current (FCNC) processes. We find the current bound on
B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on
the lightest Higgs boson mass implies an important lower bound on tan beta,
which in turn limits the size of the new FCNC transitions. Remarkably, the
combined analysis does not rule out large effects in B_s-B_s-bar mixing and we
can easily accomodate the large CP phase in the B_s-B_s-bar system which has
recently been inferred from a global analysis of CDF and DO data. The model
predicts a particle spectrum which is different from the popular Constrained
Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces
heavy masses, typically above 1 TeV, for the sfermions of the degenerate first
two generations. However, the ratio of the third-generation and
first-generation sfermion masses is smaller than in the CMSSM and a (dominantly
right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes,
Fig. 2 corrected; journal versio
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
Bounds and Decays of New Heavy Vector-like Top Partners
We study the phenomenology of new heavy vector-like fermions that couple to
the third generation quarks via Yukawa interactions, covering all the allowed
representations under the standard model gauge groups. We first review tree and
loop level bounds on these states. We then discuss tree level decays and
loop-induced decays to photon or gluon plus top. The main decays at tree level
are to W b and/or Z and Higgs plus top via the new Yukawa couplings. The
radiative loop decays turn out to be quite close to the naive estimate: in all
cases, in the allowed perturbative parameter space, the branching ratios are
mildly sensitive on the new Yukawa couplings and small. We therefore conclude
that the new states can be observed at the LHC and that the tree level decays
can allow to distinguish the different representations. Moreover, the
observation of the radiative decays at the LHC would suggest a large Yukawa
coupling in the non-perturbative regime.Comment: 32 pages, 2 tables, 10 figure
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
- …
