2,695 research outputs found

    Thermal barrier coating life prediction model development

    Get PDF
    In order to fully exploit thermal barrier coatings (TBCs) on turbine components and achieve the maximum performance benefit, the knowledge and understanding of TBC failure mechanisms must be increased and the means to predict coating life developed. The proposed program will determine the predominant modes of TBC system degradation and then develop and verify life prediction models accounting for those degradation modes. The successful completion of the program will have dual benefits: the ability to take advantage of the performance benefits offered by TBCs, and a sounder basis for making future improvements in coating behavior

    Finding structural anomalies in star graphs: A general approach

    Full text link
    We develop a general theory for a quantum-walk search on a star graph. A star graph has N edges each of which is attached to a central vertex. A graph G is attached to one of these edges, and we would like to find out to which edge it is attached. This is done by means of a quantum walk, a quantum version of a random walk. This walk contains O(\sqrt{N}) steps, which represents a speedup over a classical search, which would require O(N) steps. The overall graph, star plus G, is divided into two parts, and we find that for a quantum speedup to occur, the eigenvalues associated with these two parts in the N goes to infinity limit must be the same. Our theory tells us how the initial state of the walk should be chosen, and how many steps the walk must make in order to find G.Comment: Replaced with published versio
    corecore