729 research outputs found
Transient resonances in the inspirals of point particles into black holes
We show that transient resonances occur in the two body problem in general
relativity, in the highly relativistic, extreme mass-ratio regime for spinning
black holes. These resonances occur when the ratio of polar and radial orbital
frequencies, which is slowly evolving under the influence of gravitational
radiation reaction, passes through a low order rational number. At such points,
the adiabatic approximation to the orbital evolution breaks down, and there is
a brief but order unity correction to the inspiral rate. Corrections to the
gravitational wave signal's phase due to resonance effects scale as the square
root of the inverse of mass of the small body, and thus become large in the
extreme-mass-ratio limit, dominating over all other post-adiabatic effects. The
resonances make orbits more sensitive to changes in initial data (though not
quite chaotic), and are genuine non-perturbative effects that are not seen at
any order in a standard post-Newtonian expansion. Our results apply to an
important potential source of gravitational waves, the gradual inspiral of
white dwarfs, neutron stars, or black holes into much more massive black holes.
It is hoped to exploit observations of these sources to map the spacetime
geometry of black holes. However, such mapping will require accurate models of
binary dynamics, which is a computational challenge whose difficulty is
significantly increased by resonance effects. We estimate that the resonance
phase shifts will be of order a few tens of cycles for mass ratios , by numerically evolving fully relativistic orbital dynamics
supplemented with an approximate, post-Newtonian self-force.Comment: 4 pages, 1 figure, minor correction
Semianalytical estimates of scattering thresholds and gravitational radiation in ultrarelativistic black hole encounters
Ultrarelativistic collisions of black holes are ideal gedanken experiments to
study the nonlinearities of general relativity. In this paper we use
semianalytical tools to better understand the nature of these collisions and
the emitted gravitational radiation. We explain many features of the energy
spectra extracted from numerical relativity simulations using two complementary
semianalytical calculations. In the first calculation we estimate the radiation
by a "zero-frequency limit" analysis of the collision of two point particles
with finite impact parameter. In the second calculation we replace one of the
black holes by a point particle plunging with arbitrary energy and impact
parameter into a Schwarzschild black hole, and we explore the multipolar
structure of the radiation paying particular attention to the near-critical
regime. We also use a geodesic analogy to provide qualitative estimates of the
dependence of the scattering threshold on the black hole spin and on the
dimensionality of the spacetime.Comment: 29 pages, 19 figure, 6 tables, minor changes to match version in
press in Phys.Rev.
Effective source approach to self-force calculations
Numerical evaluation of the self-force on a point particle is made difficult
by the use of delta functions as sources. Recent methods for self-force
calculations avoid delta functions altogether, using instead a finite and
extended "effective source" for a point particle. We provide a review of the
general principles underlying this strategy, using the specific example of a
scalar point charge moving in a black hole spacetime. We also report on two new
developments: (i) the construction and evaluation of an effective source for a
scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii)
the successful implementation of hyperboloidal slicing that significantly
improves on previous treatments of boundary conditions used for
effective-source-based self-force calculations. Finally, we identify some of
the key issues related to the effective source approach that will need to be
addressed by future work.Comment: Invited review for NRDA/Capra 2010 (Theory Meets Data Analysis at
Comparable and Extreme Mass Ratios), Perimeter Institute, June 2010, CQG
special issue - 22 pages, 8 figure
Symmetry-dependent Mn-magnetism in Al69.8Pd12.1Mn18.1
Abstract.: We investigated the stability of magnetic moments in Al69.8Pd12.1Mn18.1. This alloy exists in both, the icosahedral (i) and the decagonal (d) quasicrystalline form. The transition from the i- to the d-phase is achieved by a simple heat treatment. We present the results of measurements of the 27Al NMR-response, the dc magnetic susceptibility, and the low-temperature specific heat of both phases. In the icosahedral compound, the majority of the Mn ions carries a magnetic moment. Their number is reduced by approximately a factor of two by transforming the alloy to its decagonal variety. For both compounds, we have indications for two different local environments of the Al nuclei. The first reflects a low density of states of conduction electrons and a weak coupling of the Al nuclei to the Mn-moments. The second type of environment implies a large d-electron density of states at the Fermi level and a strong coupling to the magnetic Mn moments. Spin-glass freezing transitions are observed at Tdecaf=12K for the decagonal, and Ticof=19 K for the icosahedral phas
Localized versus itinerant magnetic moments in Na0.72CoO2
Based on experimental 59Co-NMR data in the temperature range between 0.1 and
300 K, we address the problem of the character of the Co 3d-electron based
magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different
Co environments below 300 K and their differentiation increases with decreasing
temperature. We show that the 23Na- and 59Co-NMR data may consistently be
interpreted by assuming that below room temperature the Co 3d-electrons are
itinerant. Their magnetic interaction appears to favor an antiferromagnetic
coupling, and we identify a substantial orbital contribution corb to the
d-electron susceptibility. At low temperatures corb seems to acquire some
temperature dependence, suggesting an increasing influence of spin-orbit
coupling. The temperature dependence of the spin-lattice relaxation rate
T1-1(T) confirms significant variations in the dynamics of this electronic
subsystem between 200 and 300K, as previously suggested. Below 200 K, Na0.7CoO2
may be viewed as a weak antiferromagnet with TN below 1 K but this scenario
still leaves a number of open questions.Comment: 8.7 pages, 6 Figures, submitted to Phys. Rev.
Detection of Phase Jumps of Free Core Nutation of the Earth and their Concurrence with Geomagnetic Jerks
We detected phase jumps of the Free Core Nutation (FCN) of the Earth directly
from the analysis of the Very Long Baseline Interferometer (VLBI) observation
of the Earth rotation for the period 1984-2003 by applying the Weighted Wavelet
Z-Transform (WWZ) method and the Short-time Periodogram with the Gabor function
(SPG) method. During the period, the FCN had two significant phase jumps in
1992 and 1998. These epochs coincide with the reported occurrence of
geomagnetic jerks.Comment: 8 pages, 4 figure
A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order
The motion of a small compact object in a background spacetime is
investigated in the context of a model nonlinear scalar field theory. This
model is constructed to have a perturbative structure analogous to the General
Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the
effective field theory approach to this model and calculate the finite part of
the self force on the small compact object through third order in the ratio of
the size of the compact object to the curvature scale of the background (e.g.,
black hole) spacetime. We use well-known renormalization methods and
demonstrate the consistency of the formalism in rendering the self force finite
at higher orders within a point particle prescription for the small compact
object. This nonlinear scalar model should be useful for studying various
aspects of higher-order self force effects in EMRIs but within a comparatively
simpler context than the full gravitational case. These aspects include
developing practical schemes for higher order self force numerical
computations, quantifying the effects of transient resonances on EMRI waveforms
and accurately modeling the small compact object's motion for precise
determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure
Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate
We present a study of Nernst effect in underdoped in
magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was
found to persist in presence of a field-induced non-metallic resistivity. By
simultaneously measuring resistivity and the Nernst coefficient, we extract the
entropy of vortex cores in the vicinity of this field-induced
superconductor-insulator transition. Moreover, the temperature dependence of
the thermo-electric Hall angle provides strong constraints on the possible
origins of the finite Nernst signal above , as recently discovered by Xu
et al.Comment: 5 Pages inculding 4 figure
Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600
approach the era of first detections, we review the current knowledge of the
coalescence rates and the mass and spin distributions of merging neutron-star
and black-hole binaries. We emphasize the bi-directional connection between
gravitational-wave astronomy and conventional astrophysics. Astrophysical input
will make possible informed decisions about optimal detector configurations and
search techniques. Meanwhile, rate upper limits, detected merger rates, and the
distribution of masses and spins measured by gravitational-wave searches will
constrain astrophysical parameters through comparisons with astrophysical
models. Future developments necessary to the success of gravitational-wave
astronomy are discussed.Comment: Replaced with version accepted by CQG
Unconventional Charge Ordering in Na0.70CoO2 below 300 K
We present the results of measurements of the dc-magnetic susceptibility
chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50
and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an
effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced
anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is
found in chi(T). Our data suggest the onset of a dramatic change in the Co
3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our
results maybe interpreted as evidence for either a tendency to electron
localization or an unconventional charge-density wave phenomenon within the
cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The
manuscript has been revised following the recommendations of the referees.
The discussion section contains substantial change
- …
