2,891 research outputs found

    Sub-milliarcsecond precision spectro-astrometry of Be stars

    Full text link
    The origin of the disks around Be stars is still not known. Further progress requires a proper parametrization of their structure, both spatially and kinematically. This is challenging as the disks are very small. Here we assess whether a novel method is capable of providing these data. We obtained spectro astrometry around the Pa beta line of two bright Be stars, alpha Col and zeta Tau, to search for disk signatures. The data, with a pixel to pixel precision of the centroid position of 0.3..0.4 milliarcsecond is the most accurate such data to date. Artefacts at the 0.85 mas level are present in the data, but these are readily identified as they were non-repeatable in our redundant datasets. This does illustrate the need of taking multiple data to avoid spurious detections. The data are compared with simple model simulations of the spectro astrometric signatures due to rotating disks around Be stars. The upper limits we find for the disk radii correspond to disk sizes of a few dozen stellar radii if they rotate Keplerian. This is very close to observationally measured and theoretically expected disk sizes, and this paper therefore demonstrates that spectro-astrometry, of which we present the first such attempt, has the potential to resolve the disks around Be stars.Comment: 6 pages, A&A accepte

    Sensitivity analysis of the reactor safety study

    Get PDF
    Originally presented as the first author's thesis, (M.S.) in the M.I.T. Dept. of Nuclear Engineering, 1979.The Reactor Safety Study (RSS) or Wash-1400 developed a methodology estimating the public risk from light water nuclear reactors. In order to give further insights into this study, a sensitivity analysis has been performed to determine the significant contributors to risk for both the PWR and BWR. The sensitivity to variation of the point values of the failure probabilities reported in the RSS was determined for the safety systems identified therein, as well as for many of the generic classes from which individual failures contributed to system failures. Increasing as well as decreasing point values were considered. An analysis of the sensitivity to increasing uncertainty in system failure probabilities was also performed. The sensitivity parameters chosen were release category prob- abilities, core melt probability, and the risk parameters of early fatalities, latent cancers and total property damage. The latter three are adequate for describing all public risks identified in the RSS. The results indicate reductions of public risk by less than a factor of two for factor reductions in system or generic failure probabilities as hignh as one hundred. There also appears to be more benefit in monitoring the most sensitive systems to verify adherence to RSS failure rates than to backfitting present reactors. The sensitivity analysis results do indicate, however, possible benefits in reducing human error rates.Final report for research project sponsored by Northeast Utilities Service Company, Yankee Atomic Electric Company under the M.I.T. Energy Laboratory Electric Utility Program

    Gas damping force noise on a macroscopic test body in an infinite gas reservoir

    Full text link
    We present a simple analysis of the force noise associated with the mechanical damping of the motion of a test body surrounded by a large volume of rarefied gas. The calculation is performed considering the momentum imparted by inelastic collisions against the sides of a cubic test mass, and for other geometries for which the force noise could be an experimental limitation. In addition to arriving at an accurated estimate, by two alternative methods, we discuss the limits of the applicability of this analysis to realistic experimental configurations in which a test body is surrounded by residual gas inside an enclosure that is only slightly larger than the test body itself.Comment: 8 pages. updated with correct translational damping coefficient for cylinder on axis. added cylinder orthogonal to symmetry axis, force and torque. slightly edited throughou

    Effects of space shuttle launches STS-1 through STS-9 on terrestrial vegetation of John F. Kennedy Space Center, Florida

    Get PDF
    Space Shuttle launches produce a cloud containing hydrochloric acid (HCl), aluminum oxide (Al203), and other substances. Acidities of less than 0.5 pH have been measured routinely in association with the launch cloud. In an area of about 22 ha regularly exposed to the exhaust cloud during most Shuttle launches, acute vegetation damage has resulted from the first nine Shuttle launches. Changes include loss of sensitive species, loss of plant community structure, reduction in total cover, and replacement of some species by weedy invaders. Community level changes define a retrogressive sequence. One-time impacts to strand and dune vegetation occurred after launches of STS-8 and STS-9. Acute vegetation damage occurred especially to sensitive species. Within six months, however, recovery was nearly complete. Sensitivity of species to the launch cloud was partially predicted by previous laboratory studies. Far-field acidic and dry fallout from the cloud as it rises to stabilization and moves with the prevailing winds causes vegetation spotting. Damage from this deposition is minor; typically at most 1% to 5% of leaf surface area is affected. No plant mortality or community changes have occurred from far-field deposition

    A Comparative Study of Public Beliefs about Five Energy Systems

    Get PDF
    Public perceptions (n=244) of five alternative energy sources (nuclear, coal, oil, hydro, and solar) were examined using an attitude model based upon the underlying beliefs held about the attitude object (e.g., each energy system); the focus was on the differing perceptions of sub-groups (n=50) most PRO and CON the use of nuclear energy. Both PRO and CON groups preferred hydro and solar energy to the other energy sources; but the PRO Nuclear Group preferred nuclear energy to the fossil fuels while, for the CON Nuclear Group, nuclear energy was the least preferred system. Of the theoretically possible significant contributors to near-term Austrian electricity supply which were considered in this study (i.e., nuclear, coal, oil), the PRO Nuclear Group saw oil as the alternative to nuclear energy while the CON Nuclear Group preferred coal to oil as the non-nuclear alternative. Factor analysis found that five, relatively independent belief dimensions characterize public thinking about energy systems: beliefs about future-oriented and political risks; economic benefits; environmental risks; psychological/physical risks; and future technology development. Analysis of the belief systems suggested that both PRO and CON Nuclear Groups preferred hydro and solar energy because these systems were perceived as being the least threatening on all risk-related dimensions. The PRO group saw nuclear energy as the system most likely to lead to economic benefits and future technological developments; their low ratings of fossil fuels were primarily due to beliefs that the fossil fuels could provide only marginal economic benefits while leading to appreciable environmental risks. In contrast, the CON group viewed nuclear energy as only marginally more likely to provide economic and technological benefits than the fossil fuels, but as an appreciably greater threat on the risk-related dimensions

    Sensitivity analysis of the reactor safety study

    Get PDF
    Originally presented as the first author's thesis, (M.S.)--in the M.I.T. Dept. of Nuclear Engineering, 1979Includes bibliographical references (p. 232-233)Final research project reportFinal report for research project sponsored by Northeast Utilities Service Company, Yankee Atomic Electric Company under the M.I.T. Energy Laboratory Electric Utility Progra

    High-Resolution Infrared Spectroscopy of the Brown Dwarf Epsilon Indi Ba

    Full text link
    We report on the analysis of high-resolution infrared spectra of the newly discovered brown dwarf Epsilon Indi Ba. This is the closest known brown dwarf to the solar system, with a distance of 3.626 pc. Spectra covering the ranges of 2.308-2.317 microns and 1.553-1.559 microns were observed at a spectral resolution of R=50,000 with the Phoenix spectrometer on the Gemini South telescope. The physical paramters of effective temperature and surface gravity are derived by comparison to model spectra calculated from atmospheres computed using unified cloudy models. An accurate projected rotational velocity is also derived.Comment: 9 pages, 3 figures. Astrophysical Journal Letters, in pres
    corecore