4,410 research outputs found
Quantum Corrections to Thermopower and Conductivity in Graphene
The quantum corrections to the conductivity and the thermopower in monolayer
graphene are studied. We use the recursive Green's function method to calculate
numerically the conductivity and the thermopower of graphene. We then analyze
these weak localization corrections by fitting with the analytical theory as
function of the impurity parameters and the gate potential. As a result of the
quantum corrections to the thermopower, we find large magnetothermopower which
is shown to provide a very sensitive measure of the size and strength of the
impurities. We compare these analytical and numerical results with existing
experimental measurements of magnetoconductance of single layer graphene and
find that the average size and strength of the impurities in these samples can
thereby be determined. We suggest favorable parameter ranges for future
measurements of the magnetothermopower
From non-symmetric particle systems to non-linear PDEs on fractals
We present new results and challenges in obtaining hydrodynamic limits for
non-symmetric (weakly asymmetric) particle systems (exclusion processes on
pre-fractal graphs) converging to a non-linear heat equation. We discuss a
joint density-current law of large numbers and a corresponding large deviations
principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016
conference "Stochastic Partial Differential Equations & Related Fields" in
honor of Michael R\"ockner's 60th birthday, Bielefel
An apodizing phase plate coronagraph for VLT/NACO
We describe a coronagraphic optic for use with CONICA at the VLT that
provides suppression of diffraction from 1.8 to 7 lambda/D at 4.05 microns, an
optimal wavelength for direct imaging of cool extrasolar planets. The optic is
designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a
D-shaped region in the image plane, without the need for any focal plane
occulting mask.Comment: 9 pages, 5 figures, to appear in Proc. SPIE Vol. 773
Absolute physical calibration in the infrared
We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24 μm band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method). After the rejection of a small number of stars with anomalous SEDs (or bad measurements), upper limits of ~1.5% root mean square (rms) are placed on the intrinsic infrared (IR) SED variations in both A-dwarf and solar-type stars. These types of stars are therefore suitable as general-purpose standard stars in the IR. We provide absolutely calibrated SEDs for a standard zero magnitude A star and for the Sun to allow extending this work to any other IR photometric system. They allow the recommended calibration to be applied from 1 to 25 μm with an accuracy of ~2%, and with even higher accuracy at specific wavelengths such as 2.2, 10.6, and 24 μm, near which there are direct measurements. However, we confirm earlier indications that Vega does not behave as a typical A0V star between the visible and the IR, making it problematic as the defining star for photometric systems. The integration of measurements of the Sun with those of solar-type stars also provides an accurate estimate of the solar SED from 1 through 30 μm, which we show agrees with theoretical models
- …
