2,828 research outputs found

    Towards an understanding of hole superconductivity

    Full text link
    From the very beginning K. Alex M\"uller emphasized that the materials he and George Bednorz discovered in 1986 were holehole superconductors. Here I would like to share with him and others what I believe to be thethe key reason for why high TcT_c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago. This paper is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday. arXiv admin note: text overlap with arXiv:1703.0977

    Bounds and Inequalities Relating h-Index, g-Index, e-Index and Generalized Impact Factor

    Get PDF
    Finding relationships among different indices such as h-index, g-index, e-index, and generalized impact factor is a challenging task. In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them.Comment: 17 pages, 6 figures, 5 table

    Comparison of the Efficacy of Caudal, Interlaminar, and Transforaminal Epidural Injections in Managing Lumbar Disc Herniation: Is One Method Superior to the Other?

    Get PDF
    Background: Epidural injections are performed utilizing 3 approaches in the lumbar spine: caudal, interlaminar, and transforaminal. The literature on the efficacy of epidural injections has been sporadic. There are few high-quality randomized trials performed under fluoroscopy in managing disc herniation that have a long-term follow-up and appropriate outcome parameters. There is also a lack of literature comparing the efficacy of these 3 approaches. Methods: This manuscript analyzes data from 3 randomized controlled trials that assessed a total of 360 patients with lumbar disc herniation. There were 120 patients per trial either receiving local anesthetic alone (60 patients) or local anesthetic with steroids (60 patients). Results: Analysis showed similar efficacy for caudal, interlaminar, and transforaminal approaches in managing chronic pain and disability from disc herniation. The analysis of caudal epidural injections showed the potential superiority of steroids compared with local anesthetic alone a 2-year follow-up, based on the average relief per procedure. In the interlaminar group, results were somewhat superior for pain relief in the steroid group at 6 months and functional status at 12 months. Interlaminar epidurals provided improvement in a significantly higher proportion of patients. The proportion of patients nonresponsive to initial injections was also lower in the group for local anesthetic with steroid in the interlaminar trial. Conclusions: The results of this assessment show significant improvement in patients suffering from chronic lumbar disc herniation with 3 lumbar epidural approaches with local anesthetic alone, or using steroids with long-term follow-up of up to 2 years, in a contemporary interventional pain management setting

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    Exact ground states for the four-electron problem in a two-dimensional finite Hubbard square system

    Full text link
    We present exact explicit analytical results describing the exact ground state of four electrons in a two dimensional square Hubbard cluster containing 16 sites taken with periodic boundary conditions. The presented procedure, which works for arbitrary even particle number and lattice sites, is based on explicitly given symmetry adapted base vectors constructed in r-space. The Hamiltonian acting on these states generates a closed system of 85 linear equations providing by its minimum eigenvalue the exact ground state of the system. The presented results, described with the aim to generate further creative developments, not only show how the ground state can be exactly obtained and what kind of contributions enter in its construction, but emphasize further characteristics of the spectrum. On this line i) possible explications are found regarding why weak coupling expansions often provide a good approximation for the Hubbard model at intermediate couplings, or ii) explicitly given low lying energy states of the kinetic energy, avoiding double occupancy, suggest new roots for pairing mechanism attracting decrease in the kinetic energy, as emphasized by kinetic energy driven superconductivity theories.Comment: 37 pages, 18 figure

    Direct electronic measurement of the spin Hall effect

    Full text link
    The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics[1]. Amongst the different approaches for spin generation and manipulation, spin-orbit coupling, which couples the spin of an electron to its momentum, is attracting considerable interest. In a spin-orbit-coupled system, a nonzero spin-current is predicted in a direction perpendicular to the applied electric field, giving rise to a "spin Hall effect"[2-4]. Consistent with this effect, electrically-induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel[5] and in two-dimensional electron gases in semiconductor heterostructures[6,7]. Here we report electrical measurements of the spin-Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.Comment: 5 pages, 4 figures. Accepted for publication in Nature (pending format approval

    The role of mentorship in protege performance

    Full text link
    The role of mentorship on protege performance is a matter of importance to academic, business, and governmental organizations. While the benefits of mentorship for proteges, mentors and their organizations are apparent, the extent to which proteges mimic their mentors' career choices and acquire their mentorship skills is unclear. Here, we investigate one aspect of mentor emulation by studying mentorship fecundity---the number of proteges a mentor trains---with data from the Mathematics Genealogy Project, which tracks the mentorship record of thousands of mathematicians over several centuries. We demonstrate that fecundity among academic mathematicians is correlated with other measures of academic success. We also find that the average fecundity of mentors remains stable over 60 years of recorded mentorship. We further uncover three significant correlations in mentorship fecundity. First, mentors with small mentorship fecundity train proteges that go on to have a 37% larger than expected mentorship fecundity. Second, in the first third of their career, mentors with large fecundity train proteges that go on to have a 29% larger than expected fecundity. Finally, in the last third of their career, mentors with large fecundity train proteges that go on to have a 31% smaller than expected fecundity.Comment: 23 pages double-spaced, 4 figure

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information

    A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions

    Get PDF
    The large amount of information contained in bibliographic databases has recently boosted the use of citations, and other indicators based on citation numbers, as tools for the quantitative assessment of scientific research. Citations counts are often interpreted as proxies for the scientific influence of papers, journals, scholars, and institutions. However, a rigorous and scientifically grounded methodology for a correct use of citation counts is still missing. In particular, cross-disciplinary comparisons in terms of raw citation counts systematically favors scientific disciplines with higher citation and publication rates. Here we perform an exhaustive study of the citation patterns of millions of papers, and derive a simple transformation of citation counts able to suppress the disproportionate citation counts among scientific domains. We find that the transformation is well described by a power-law function, and that the parameter values of the transformation are typical features of each scientific discipline. Universal properties of citation patterns descend therefore from the fact that citation distributions for papers in a specific field are all part of the same family of univariate distributions.Comment: 9 pages, 6 figures. Supporting information files available at http://filrad.homelinux.or

    Metrics to evaluate research performance in academic institutions: A critique of ERA 2010 as applied in forestry and the indirect H2 index as a possible alternative

    Full text link
    Excellence for Research in Australia (ERA) is an attempt by the Australian Research Council to rate Australian universities on a 5-point scale within 180 Fields of Research using metrics and peer evaluation by an evaluation committee. Some of the bibliometric data contributing to this ranking suffer statistical issues associated with skewed distributions. Other data are standardised year-by-year, placing undue emphasis on the most recent publications which may not yet have reliable citation patterns. The bibliometric data offered to the evaluation committees is extensive, but lacks effective syntheses such as the h-index and its variants. The indirect H2 index is objective, can be computed automatically and efficiently, is resistant to manipulation, and a good indicator of impact to assist the ERA evaluation committees and to similar evaluations internationally.Comment: 19 pages, 6 figures, 7 tables, appendice
    corecore