1,754 research outputs found
Full abstraction for fair testing in CCS (expanded version)
In previous work with Pous, we defined a semantics for CCS which may both be
viewed as an innocent form of presheaf semantics and as a concurrent form of
game semantics. We define in this setting an analogue of fair testing
equivalence, which we prove fully abstract w.r.t. standard fair testing
equivalence. The proof relies on a new algebraic notion called playground,
which represents the `rule of the game'. From any playground, we derive two
languages equipped with labelled transition systems, as well as a strong,
functional bisimulation between them.Comment: 80 page
Cartesian closed 2-categories and permutation equivalence in higher-order rewriting
We propose a semantics for permutation equivalence in higher-order rewriting.
This semantics takes place in cartesian closed 2-categories, and is proved
sound and complete
New evidence for Green's conjecture on syzygies of canonical curves
We prove that two weakened forms of Green's conjectures for canonical curves
are equivalent when the genus is odd.Comment: Tex-type: LaTe
Shapely monads and analytic functors
In this paper, we give precise mathematical form to the idea of a structure
whose data and axioms are faithfully represented by a graphical calculus; some
prominent examples are operads, polycategories, properads, and PROPs. Building
on the established presentation of such structures as algebras for monads on
presheaf categories, we describe a characteristic property of the associated
monads---the shapeliness of the title---which says that "any two operations of
the same shape agree". An important part of this work is the study of analytic
functors between presheaf categories, which are a common generalisation of
Joyal's analytic endofunctors on sets and of the parametric right adjoint
functors on presheaf categories introduced by Diers and studied by
Carboni--Johnstone, Leinster and Weber. Our shapely monads will be found among
the analytic endofunctors, and may be characterised as the submonads of a
universal analytic monad with "exactly one operation of each shape". In fact,
shapeliness also gives a way to define the data and axioms of a structure
directly from its graphical calculus, by generating a free shapely monad on the
basic operations of the calculus. In this paper we do this for some of the
examples listed above; in future work, we intend to do so for graphical calculi
such as Milner's bigraphs, Lafont's interaction nets, or Girard's
multiplicative proof nets, thereby obtaining canonical notions of denotational
model
- …
