578 research outputs found

    Local spin and charge properties of beta-Ag0.33V2O5 studied by 51V NMR

    Get PDF
    Local spin and charge properties were studied on beta-Ag0.33V2O5, a pressure-induced superconductor, at ambient pressure using 51V-NMR and zero-field-resonance (ZFR) techniques. Three inequivalent Vi sites (i=1, 2, and 3) were identified from 51V-NMR spectra and the principal axes of the electric-field-gradient (EFG) tensor were determined in a metallic phase and the following charge-ordering phase. We found from the EFG analysis that the V1 sites are in a similar local environment to the V3 sites. This was also observed in ZFR spectra as pairs of signals closely located with each other. These results are well explained by a charge-sharing model where a 3d1 electron is shared within a rung in both V1-V3 and V2-V2 two-leg ladders.Comment: 12pages, 16figure

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Altered Host Immunity, Human T Lymphotropic Virus Type I Replication, and Risk of Adult T-Cell Leukemia/Lymphoma: A Prospective Analysis from the ATL Cohort Consortium

    Get PDF
    Background: Adult T-cell leukemia/lymphoma (ATL) is a rare and often fatal outcome of infection with human T-lymphotropic virus type I (HTLV-I). Altered host immunity in HTLV-I carriers has been postulated as a risk factor for ATL, but is not well understood. Methods: We prospectively examined well-validated serologic markers of HTLV-I pathogenesis and host immunity in 53 incident ATL cases and 150 carefully matched asymptomatic HTLV-I carriers from eight population-based studies in Japan, Jamaica, the United States and Brazil. We used multivariable conditional logistic regression, conditioned on the matching factors (cohort/race, age, sex, and sample collection year), to evaluate the biomarkers’ associations with ATL in all subjects and by years (≤5, >5) from blood draw to ATL diagnosis. Results: In the pooled population, above-median soluble interleukin-2-receptor-alpha levels (sIL2R, v. ≤ median; odds ratio (OR), 95% confidence interval (CI)=4.08, 1.47-11.29) and anti-Tax seropositivity (anti-Tax; OR, 95% CI=2.97, 1.15-7.67), which indicate T cell activation and HTLV-I replication, respectively, were independently associated with an increased ATL risk. Above-median total immunoglobulin E levels (v. ≤ median; OR, 95% CI=0.45, 0.19-1.06), which indicate type 2 (B cell) activation, predicted a lower ATL risk. The sIL2R and anti-Tax associations with ATL were stronger in samples collected ≤5 years pre-diagnosis. Conclusions: The biomarker profile predictive of ATL risk suggests a role for heightened T cell activation and HTLV-I replication and diminished type 2 immunity in the etiology of ATL in HTLV-I carriers. Translation of these findings to clinical risk prediction or early ATL detection requires further investigation. Acknowledgements: This abstract is presented on behalf of the ATL Cohort Consortium

    The evolution of sex-specific virulence in infectious diseases

    Get PDF
    Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females

    Application of Surface wave methods for seismic site characterization

    Get PDF
    Surface-wave dispersion analysis is widely used in geophysics to infer a shear wave velocity model of the subsoil for a wide variety of applications. A shear-wave velocity model is obtained from the solution of an inverse problem based on the surface wave dispersive propagation in vertically heterogeneous media. The analysis can be based either on active source measurements or on seismic noise recordings. This paper discusses the most typical choices for collection and interpretation of experimental data, providing a state of the art on the different steps involved in surface wave surveys. In particular, the different strategies for processing experimental data and to solve the inverse problem are presented, along with their advantages and disadvantages. Also, some issues related to the characteristics of passive surface wave data and their use in H/V spectral ratio technique are discussed as additional information to be used independently or in conjunction with dispersion analysis. Finally, some recommendations for the use of surface wave methods are presented, while also outlining future trends in the research of this topic

    Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications

    Get PDF
    HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Levels of the cancer biomarker CA 19-9 are associated with thrombin generation in plasma from treatment-na?ve pancreatic cancer patients

    Get PDF
    Background: Pancreatic ductal adenocarcinoma (PDAC) is associated with a hypercoagulable state and high mortality. Increases in the plasma levels of tumor marker carbohydrate antigen (CA) 19-9 are used in diagnosis and follow-up but have also been reported to precede venous thromboembolism (VTE). Aims: We examined the association between CA 19-9 and thrombin generation (TG) in plasma from PDAC patients, as well as their association with coagulation biomarkers prior to pancreatic surgery. In addition, we determined the effect of commercial sources of CA 19-9 on TG. Methods: We collected plasma from 58 treatment-naive PDAC patients without any signs of VTE. We measured levels of CA 19-9, FVIII, fibrinogen, D-dimer, antithrombin and extracellular vesicle (EV) tissue factor (TF) activity and TG using a Calibrated Automated Thrombogram (CAT). The effect of different commercial sources of CA 19-9 on TG in Standard Human Plasma (SHP) was also studied. Results: Patient plasma samples were divided into 4 preoperative groups based on the level of CA 19-9: none 1000 U/mL. CA 19-9 levels were associated with several of the TG parameters, including endogenous thrombin potential, peak, and time to peak. CA 19-9 did not associate with any of the coagulation biomarkers. Spiking of SHP with CA 19-9 increased TG but this was decreased by an antiTF antibody. Conclusions: CA 19-9 was associated with TG in patients prior to any pancreatic cancer treatments or signs of VTE. Some commercial sources of CA 19-9 enhanced TG in SHP seemingly due to contaminating TF.Peer reviewe

    Comparison of the coagulopathies associated with COVID‐19 and sepsis

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with activation of coagulation that mainly presents as thrombosis. Sepsis is also associated with activation of coagulation that mainly presents as disseminated intravascular coagulation. Many studies have reported increased levels of plasma d-dimer in patients with COVID-19 that is associated with severity, thrombosis, and mortality. OBJECTIVES: The aim of this study was to compare levels of circulating extracellular vesicle tissue factor (EVTF) activity and active plasminogen activator inhibitor 1 (PAI-1) in plasma from patients with COVID-19 or sepsis. METHODS: We measured levels of d-dimer, EVTF activity, and active PAI-1 in plasma samples from patients with COVID-19 (intensive care unit [ICU], N = 15; and non-ICU, N = 20) and patients with sepsis (N = 35). RESULTS: Patients with COVID-19 had significantly higher levels of d-dimer, EVTF activity, and active PAI-1 compared with healthy controls. Patients with sepsis had significantly higher levels of d-dimer and EVTF activity compared with healthy controls. Levels of d-dimer were significantly lower in patients with COVID-19 compared with patients with sepsis. Levels of EVTF activity were significantly higher in ICU patients with COVID-19 compared with patients with sepsis. Levels of active PAI-1 were significantly higher in patients with COVID-19 compared with patients with sepsis. CONCLUSIONS: High levels of both EVTF activity and active PAI-1 may promote thrombosis in patients with COVID-19 due to simultaneous activation of coagulation and inhibition of fibrinolysis. The high levels of active PAI-1 in patients with COVID-19 may limit plasmin degradation of crosslinked fibrin and the release of d-dimer. This may explain the lower levels of D-dimer in patients with COVID-19 compared with patients with sepsis

    Characteristics of carbon monoxide oxidization in rich hydrogen by mesoporous silica with TiO(2) photocatalyst

    Get PDF
    Hydrogen (H2) is normally used as the fuel to power polymer electrolyte fuel cell (PEFC). However, the power generation performance of PEFC is harmed by the carbon monoxide (CO) in the H2 that is often produced frommethane (CH4). The purpose of this study is to investigate the experimental conditions in order to improve the CO oxidization performance of mesoporous silica loaded with TiO2. The impact of loading ratio of TiO2 and initial concentration ratio of O2 to CO on CO oxidization performance is investigated. As a result, the optimum loading ratio of TiO2 and initial concentration ratio of O2 to CO were 20 wt% and 4 vol%, respectively, under the experimental conditions. Under this optimumexperimental condition, the CO in rich H2 in the reactor can be completely eliminated from initial 12000 ppmV after UV light illumination of 72 hours.Akira Nishimura, Yutaka Yamano, Tomokazu Hisada, Masafumi Hirota, and Eric H
    corecore