347 research outputs found

    Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    Get PDF
    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection

    Tranilast increases vasodilator response to acetylcholine in rat mesenteric resistance arteries through increased EDHF participation

    Full text link
    Background and Purpose: Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA). Experimental Approach: Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholineinduced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619. Key Results: Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilastincubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast. Conclusions and Implications: Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channelsThis study was supported by Ministerio de Ciencia e Innovación (SAF 2009-10374), Ministerio de Economía y Competitividad (SAF 2012-38530), and Fundación Mapfre. F.E. Xavier is recipient of research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil

    Up-regulation of adipogenin, an adipocyte plasma transmembrane protein, during adipogenesis

    Get PDF
    The original publication is available at www.springerlink.com.ArticleMOLECULAR AND CELLULAR BIOCHEMISTRY. 276(1-2): 133-141 (2005)journal articl

    Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics

    Get PDF
    Silicon nanocrystals with an average size of approximately 4 nm dispersed in SiO2/Si3N4 hybrid matrix have been synthesised by magnetron sputtering followed by a high-temperature anneal. To gain understanding of the photon absorption and emission mechanisms of this material, several samples are characterised optically via spectroscopy and photoluminescence measurements. The values of optical band gap are extracted from interference-minimised absorption and luminescence spectra. Measurement results suggest that these nanocrystals exhibit transitions of both direct and indirect types. Possible mechanisms of absorption and emission as well as an estimation of exciton binding energy are also discussed

    The presence and regulation of connective tissue growth factor in the human endometrium

    Get PDF
    The potential of a solid-phase asymmetric resin-capture-release strategy for high-throughput synthesis has been evaluated. Fukuzawa's Sm(II)-mediated, asymmetric approach to γ-butyrolactones was selected to illustrate the feasibility of such a process. α,β-Unsaturated esters immobilised on an ephedrine chiral resin have been applied in an asymmetric approach to γ-butyrolactones. Lactone products are obtained in moderate isolated yields with selectivities up to 96% ee. In addition, we have shown that the ephedrine resin can be conveniently recovered and recycled although in some cases lower yields were obtained on reuse of the chiral resin. A short synthesis of a moderate DNA-binding microbial metabolite using asymmetric resin-capture-release is also described

    Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms.</p> <p>Methods</p> <p>We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant.</p> <p>Results</p> <p>We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed <it>Cell Death </it>and <it>Cell Adhesion and Migration </it>as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. <it>Ctgf, Nrp1</it>, <it>Tnfaip3, Gsta3</it>) and AP-2 and other main apoptosis players and to create a unique network.</p> <p>Conclusions</p> <p>Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.</p

    Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus

    Get PDF
    The goal of this study is to clarify whether the expression of metallothionein (MT) could affect the prognosis and the metastatic potential of squamous cell carcinoma (SCC) of the oesophagus. In paraffin-embedded specimens resected from 57 patients, MT mRNA and protein expressions were detected by in situ hybridization and immunohistochemistry respectively. The expression of MT was evaluated in respect of clinicopathologic variables and patients' survival. MT mRNA expression was significantly associated with the proportion of lymph node metastasis (71% in MT mRNA-positive tumours vs 42% in MT mRNA-negative tumours; P = 0.0343) and that of distant metastasis (29% in MT mRNA-positive tumours vs 5% in MT mRNA-negative tumours; P = 0.0452). In respect of MT protein expression, the frequency of distant metastasis was more common in MT-positive tumours than in MT-negative tumours (30% in MT-positive tumours vs 8% in MT-negative tumours; P = 0.0446). The survival rate of the patients with MT protein-negative tumours was significantly better than that of the patients with MT protein-positive tumours (P = 0.0340). There was a positive correlation between the expression of MT protein and that of proliferating cell nuclear antigen (P = 0.0018). Therefore, we conclude that MT expression, both at the mRNA and protein levels, may be a potential marker predicting metastatic and proliferative activities of oesophageal SCC. © 1999 Cancer Research Campaig
    corecore