118 research outputs found

    Airborne Mold and Endotoxin Concentrations in New Orleans, Louisiana, after Flooding, October through November 2005

    Get PDF
    BACKGROUND: The hurricanes and flooding in New Orleans, Louisiana, in October and November 2005 resulted in damp conditions favorable to the dispersion of bioaerosols such as mold spores and endotoxin. OBJECTIVE: Our objective in this study was to assess potential human exposure to bioaerosols in New Orleans after the flooding of the city. METHODS: A team of investigators performed continuous airborne sampling for mold spores and endotoxin outdoors in flooded and nonflooded areas, and inside homes that had undergone various levels of remediation, for periods of 5–24 hr during the 2 months after the flooding. RESULTS: The estimated 24-hr mold concentrations ranged from 21,000 to 102,000 spores/m(3) in outdoor air and from 11,000 to 645,000 spores/m(3) in indoor air. The mean outdoor spore concentration in flooded areas was roughly double the concentration in nonflooded areas (66,167 vs. 33,179 spores/m(3); p < 0.05). The highest concentrations were inside homes. The most common mold species were from the genera of Cladosporium and Aspergillus/Penicillium; Stachybotrys was detected in some indoor samples. The airborne endotoxin concentrations ranged from 0.6 to 8.3 EU (endo-toxin units)/m(3) but did not vary with flooded status or between indoor and outdoor environments. CONCLUSIONS: The high concentration of mold measured indoors and outdoors in the New Orleans area is likely to be a significant respiratory hazard that should be monitored over time. Workers and returning residents should use appropriate personal protective equipment and exposure mitigation techniques to prevent respiratory morbidity and long-term health effects

    Adaptation to Impacts of Climate Change on Aeroallergens and Allergic Respiratory Diseases

    Get PDF
    Climate change has the potential to have many significant impacts on aeroallergens such as pollen and mould spores, and therefore related diseases such as asthma and allergic rhinitis. This paper critically reviews this topic, with a focus on the potential adaptation measures that have been identified to date. These are aeroallergen monitoring; aeroallergen forecasting; allergenic plant management; planting practices and policies; urban/settlement planning; building design and heating, ventilating, and air-conditioning (HVAC); access to health care and medications; education; and research

    Impact of meteorological variation on hospital visits of patients with tree pollen allergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate change could affect allergic diseases, especially due to pollen. However, there has been no epidemiologic study to demonstrate the relationship between meteorological factors, pollen, and allergic patients. We aimed to investigate the association between meteorological variations and hospital visits of patients with tree pollen allergy.</p> <p>Methods</p> <p>The study subjects were adult patients who received skin prick tests between April and July from 1999 to 2008. We reviewed the medical records for the test results of 4,715 patients. Patients with tree pollen allergy were defined as those sensitized to more than 1 of 12 tree pollen allergens. We used monthly means of airborne tree pollen counts and meteorological factors: maximum/average/minimum temperature, relative humidity, and precipitation. We analyzed the correlations between meteorological variations, tree pollen counts, and the patient numbers. Multivariable logistic regression analyses were used to investigate the associations between meteorological factors and hospital visits of patients.</p> <p>Results</p> <p>The minimum temperature in March was significantly and positively correlated with tree pollen counts in March/April and patient numbers from April through July. Pollen counts in March/April were also correlated with patient numbers from April through July. After adjusting for confounders, including air pollutants, there was a positive association between the minimum temperature in March and hospital visits of patients with tree pollen allergy from April to July(odds ratio, 1.14; 95% CI 1.03 to 1.25).</p> <p>Conclusions</p> <p>Higher temperatures could increase tree pollen counts, affecting the symptoms of patients with tree pollen allergy, thereby increasing the number of patients visiting hospitals.</p

    Particle size distribution of the major Alternaria alternata allergen, Alt a 1, derived from airborne spores and subspore fragments

    Get PDF
    Abstract Fungal fragments are abundant immunoreactive bioaerosols that may outnumber the concentrations of intact spores in the air. To investigate the importance of Alternaria fragments as sources of allergens compared to Alternaria spores, we determined the levels of Alternaria spores and Alt a 1 (the major allergen in Alternaria alternata spores) collected on filters within three fractions of particulate matter (PM) of different aerodynamic diameter: (1) PM>10, (diameter>10μm); (2) PM2.5-10 (2.5-10μm); (3) PM2.5 (0.12-2.5μm). The airborne particles were collected using a three stage high-volume ChemVol cascade impactor during the Alternaria sporulation season in Poznań, Poland (30 days between 6 July and 22 September 2016). The quantification of Alt a 1 was performed using the enzyme-linked immunosorbent assay. High concentrations of Alt a 1 were recorded during warm and dry days characterized by high sunshine duration, lack of clouds and high dew point values. Atmospheric concentrations of Alternaria spores correlated significantly (r=0.930, p30%) was observed in PM2.5-10 than in PM>10. This Alt a 1 excess may be derived from sources other than spores, e.g. hyphal fragments. Overall, in outdoor air the major source of Alt a 1 are intact Alternaria spores, but the impact of other fungal fragments (hyphal parts, broken spores, conidiophores) cannot be neglected, as they may increase the total atmospheric Alt a 1 concentration

    Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe

    Get PDF
    Spores of the genus Alternaria belong to one of the most prevailing constituents of the air in all regions of the world. They form infectious inoculum of numerous plant species as well as severe inhaled allergies. The aim of this study was to compare the biological pollution with Alternaria spores of the air of 12 cities located in central and eastern Europe. The experiment was done in 2010 and it covered the territory of Latvia (LV), Lithuania (LT), Poland (PL) and Ukraine (UA). The spores were counted using an identical method and standard equipment (7-day Lanzoni volumetric sampler) followed by extensive statistical calculations. The timing of the day of maximum concentration changed mainly along the N-S direction and had a positive correlation with latitude. The most important factor determining the increase in Alternaria spore concentration was the temperature, whereas other weather parameters were not related or of low significance. Regardless of geographical location, the first phase of the season (0–0.9 % of Alternaria spores in the air) was the longest (up to 60 days) and the last (97.5 to 99 %) was the shortest (22 days or less). The means of daily concentrations of Alternaria spores ranged from 11 spores m(−3) in Klaipeda (LT, Baltic Sea coast) to 187 in Poznan (west PL, agricultural plain). The threshold value of 80 spores m(−3) that triggers the first allergy symptoms was exceeded in 8 to 86 days (Vinnitsa, UA, temperate continental, forest-steppes region). There were considerable differences between the highest number of spores per cubic metre of air, varying from 139 in the north (Klaipeda, LT) to 2,295 in central west (Poznan, PL). The biological pollution by Alternaria spores in several places of central and eastern Europe was high; the number of days exceeding the threshold value of 300 spores m(−3) connected with serious health problems of atopic people ranged from 0 to 1 on the north (LV, LT) to 29 in central west (Poznan, PL)

    Airborne pollen concentration in Nanjing, eastern China, and its relationship with meteorological factors

    Get PDF
    This paper presents the results of airborne pollen and spore trapping in Nanjing city, eastern China, using a Burkard pollen trap during two consecutive years (2013–2014). A total of 103 pollen and spore taxa were identified. Two concentration peaks are observed in the annual cycle, a spring peak dominated by arboreal pollen types (Morus, Cupressaceae, Pinus, Pterocarya, and Quercus) and a fall peak dominated by upland herbs (Compositae, Poaceae, Humulus, and Cruciferae). Wetland herbs and ferns dominate summer assemblages and winter assemblages are characterized by sporadic records of Artemisia, Chenopodiaceae, and Pinus. Strong year‐to‐year differences in measured pollen concentration are seen, probably in response to interyear differences in weather. Compared to long‐term means, 2013 was comparatively hot and dry and 2014 had a higher than average number of rain days during the flowering periods. Rising temperatures in early spring are connected with the timing of flowering and therefore pollen release, while rainfall during the flowering period appeared to remove pollen from the air, leading to lower recorded pollen concentration values. Four taxa, Cupressaceae, Quercus, Pinus, and Humulus, were considered in more detail. Each has a different pattern of variation in pollen concentration between the studied years. Cross correlation between pollen concentration and daily temperature, relative humidity, and precipitation at lags from 0 to −30 days also showed different responses for each taxon, suggesting that pollen signal responses to weather conditions have to be considered at a taxon level rather than at the assemblage level

    Incidence of post-harvest disease and airborne fungal spores in a vegetable market

    Get PDF
    The sampling of bioaerosols has been carried out using a Rotorod sampler as well as by exposing culture plates. The screening of some common vegetables was also done for the isolation of fungi as market pathogens to study post-harvest diseases. Altogether, fifty nine fungal spore types and 78 species of 33 genera belonging to different groups were recorded respectively on the rotorod strips and on exposed Petri dishes. Many saprophytic and pathogenic fungi were found to be associated with sampled vegetables from the market. In all forty-six fungal species belonging to 26 genera were recovered from five varieties of vegetables collected from the same market. The most dominant forms of fungi were of Aspergillus followed by Cladosporium, Penicillium, Alternaria, Fusarium, Curvularia, Trichoderma, and Rhizopus. Aspergillus niger, A. flavus, A. fumigatus, Penicillium spp. and Cladosporium herbarum, found to be dominant during the period of investigation. Important mycotoxin-producing fungi such as A. flavus, A. fumigatus and Fusarium moniliforme were isolated from the vegetables collected from the market

    A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module

    Get PDF
    A birch pollen emission model is described and its main features are discussed. The development of the model is based on a double-threshold temperature sum model that describes the propagation of the flowering season and naturally links to the thermal time models to predict the onset and duration of flowering. For the flowering season, the emission model considers ambient humidity and precipitation rate, both of which suppress the pollen release, as well as wind speed and turbulence intensity, which promote it. These dependencies are qualitatively evaluated using the aerobiological observations. Reflecting the probabilistic character of the flowering of an individual tree in a population, the model introduces relaxation functions at the start and end of the season. The physical basis of the suggested birch pollen emission model is compared with another comprehensive emission module reported in literature. The emission model has been implemented in the SILAM dispersion modelling system, the results of which are evaluated in a companion paper

    Effects of Wind Speed and Direction on Monthly Fluctuations of Cladosporium Conidia Concentration in the Air

    Get PDF
    This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m−3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was vs ≤ 2.5 m s−1 indicating warm days with a light breeze
    corecore