67 research outputs found

    Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1

    Get PDF
    Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of “maximizing growth rate” and “minimizing overall flux”) to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth

    Spatiotemporal modeling of microbial metabolism

    Get PDF
    Background Microbial systems in which the extracellular environment varies both spatially and temporally are very common in nature and in engineering applications. While the use of genome-scale metabolic reconstructions for steady-state flux balance analysis (FBA) and extensions for dynamic FBA are common, the development of spatiotemporal metabolic models has received little attention. Results We present a general methodology for spatiotemporal metabolic modeling based on combining genome-scale reconstructions with fundamental transport equations that govern the relevant convective and/or diffusional processes in time and spatially varying environments. Our solution procedure involves spatial discretization of the partial differential equation model followed by numerical integration of the resulting system of ordinary differential equations with embedded linear programs using DFBAlab, a MATLAB code that performs reliable and efficient dynamic FBA simulations. We demonstrate our methodology by solving spatiotemporal metabolic models for two systems of considerable practical interest: (1) a bubble column reactor with the syngas fermenting bacterium Clostridium ljungdahlii; and (2) a chronic wound biofilm with the human pathogen Pseudomonas aeruginosa. Despite the complexity of the discretized models which consist of 900 ODEs/600 LPs and 250 ODEs/250 LPs, respectively, we show that the proposed computational framework allows efficient and robust model solution. Conclusions Our study establishes a new paradigm for formulating and solving genome-scale metabolic models with both time and spatial variations and has wide applicability to natural and engineered microbial systems

    Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae

    Full text link

    Population modeling for ethanol productivity optimization in fed-batch yeast fermenters

    No full text
    corecore