587 research outputs found
Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars
Bilayer quantum Hall states support a flow of nearly dissipationless
staggered current which can only decay through collective channels. We study
the dominant finite-temperature dissipation mechanism which in narrow bars is
driven by thermal nucleation of pseudospin solitons. We find the
finite-temperature resistivity, predict the resulting staggered current-voltage
characteristics, and calculate the associated zero-temperature critical
staggered current and gate voltage.Comment: 4 pgs. REVTeX, 3 eps figure
Homogeneous Fermion Superfluid with Unequal Spin Populations
For decades, the conventional view is that an s-wave BCS superfluid can not
support uniform spin polarization due to a gap in the quasiparticle
excitation spectrum. We show that this is an artifact of the dismissal of
quasiparticle interactions in the conventional approach at the
outset. Such interactions can cause triplet fluctuations in the ground state
and hence non-zero spin polarization at "magnetic field" . The
resulting ground state is a pairing state of quasiparticles on the ``BCS
vacuum". For sufficiently large , the spin polarization of at unitarity
has the simple form . Our study is motivated by the recent
experiments at Rice which found evidence of a homogenous superfluid state with
uniform spin polarization.Comment: 4 pages, 3 figure
Estimating nonresponse bias and mode effects in a mixed mode survey
In mixed-mode surveys, it is difficult to separate sample selection differences from mode-effects that can occur when respondents respond in different interview settings. This paper provides a framework for separating mode-effects from selection effects by matching very similar respondents from different survey modes using propensity score matching. The answer patterns of the matched respondents are subsequently compared. We show that matching can explain differences in nonresponse and coverage in two Internet-samples. When we repeat this procedure for a telephone and Internet-sample however, differences persist between the samples after matching. This indicates the occurrence of mode-effects in telephone and Internet surveys. Mode-effects can be problematic; hence we conclude with a discussion of designs that can be used to explicitly study mode-effects
Two-terminal conductance fluctuations in the integer quantum Hall regime
Motivated by recent experiments on the conductance fluctuations in mesoscopic
integr quantum Hall systems, we consider a model in which the Coulomb
interactions are incorporated into the picture of edge-state transport through
a single saddle-point. The occupancies of `classical' localised states in the
two-dimensional electron system change due to the interactions between
electrons when the gate voltage on top of the device is varied. The
electrostatic potential between the localised states and the saddle-point
causes fluctuations of the saddle-point potential and thus fluctuations of the
transmission probability of edge states. This simple model is studied
numerically and compared with the observation.Comment: 6 pages with 3 figures. To be published in Physical Review
Superconductivity and crystalline electric field effects in the filled skutterudite series Pr(OsRu)Sb
X-ray powder diffraction, magnetic susceptibility , and electrical
resistivity measurements were made on single crystals of the filled
skutterudite series Pr(OsRu)Sb. One end of the series
() is a heavy fermion superconductor with a superconducting critical
temperature K, while the other end () is a conventional
superconductor with K. The lattice constant decreases
approximately linearly with increasing Ru concentration . As Ru (Os) is
substituted for Os (Ru), decreases nearly linearly with substituent
concentration and exhibits a minimum with a value of K at , suggesting that the two types of superconductivity compete with one
another. Crystalline electric field (CEF) effects in and
due to the splitting of the Pr nine-fold degenerate Hund's
rule multiplet are observed throughout the series, with the splitting
between the ground state and the first excited state increasing monotonically
as increases. The fits to the and data are
consistent with a doublet ground state for all values of x,
although reasonable fits can be obtained for a ground state for
values near the end member compounds ( or ).Comment: 10 pages, 8 figures, submitted to Phys. Rev.
Quasars and their host galaxies
This review attempts to describe developments in the fields of quasar and
quasar host galaxies in the past five. In this time period, the Sloan and 2dF
quasar surveys have added several tens of thousands of quasars, with Sloan
quasars being found to z>6. Obscured, or partially obscured quasars have begun
to be found in significant numbers. Black hole mass estimates for quasars, and
our confidence in them, have improved significantly, allowing a start on
relating quasar properties such as radio jet power to fundamental parameters of
the quasar such as black hole mass and accretion rate. Quasar host galaxy
studies have allowed us to find and characterize the host galaxies of quasars
to z>2. Despite these developments, many questions remain unresolved, in
particular the origin of the close relationship between black hole mass and
galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update
How parents perceive and feel about participation in community activities: The comparison between parents of preschoolers with and without autism spectrum disorders
The present study compared how parents of preschoolers with and without Autism Spectrum Disorders (ASD) perceived and felt about participation in community activities. A questionnaire survey was conducted with 380 Hong Kong parents of preschoolers with ASD and 214 Hong Kong parents of preschoolers without ASD. The two groups were not different in their willingness and frequency of participation in community activities. However, the psychological processes underneath their willingness were very different. Among the parents of preschoolers with ASD, their willingness was associated with how they perceived the difficulty and importance of the participation and what emotions they experienced during the activities. This pattern of association was not evident among the parents of preschoolers without ASD. Copyright © The Author(s), 2010.published_or_final_versio
The fuzzy S^2 structure of M2-M5 systems in ABJM membrane theories
We analyse the fluctuations of the ground-state/funnel solutions proposed to
describe M2-M5 systems in the level-k mass-deformed/pure Chern-Simons-matter
ABJM theory of multiple membranes. We show that in the large N limit the
fluctuations approach the space of functions on the 2-sphere rather than the
naively expected 3-sphere. This is a novel realisation of the fuzzy 2-sphere in
the context of Matrix Theories, which uses bifundamental instead of adjoint
scalars. Starting from the multiple M2-brane action, a U(1) Yang-Mills theory
on R^{2,1} x S^2 is recovered at large N, which is consistent with a single
D4-brane interpretation in Type IIA string theory. This is as expected at large
k, where the semiclassical analysis is valid. Several aspects of the
fluctuation analysis, the ground-state/funnel solutions and the
mass-deformed/pure ABJM equations can be understood in terms of a discrete
noncommutative realisation of the Hopf fibration. We discuss the implications
for the possibility of finding an M2-brane worldvolume derivation of the
classical S^3 geometry of the M2-M5 system. Using a rewriting of the equations
of the SO(4)-covariant fuzzy 3-sphere construction, we also directly compare
this fuzzy 3-sphere against the ABJM ground-state/funnel solutions and show
them to be different.Comment: 60 pages, Latex; v2: references added; v3: typos corrected and
references adde
Radiative Scalar Meson Decays in the Light-Front Quark Model
We construct a relativistic wavefunction for scalar mesons within the
framework of light-front quark model(LFQM). This scalar wavefunction is used to
perform relativistic calculations of absolute widths for the radiative decay
processes, and
which incorporate the effects of glueball-
mixing. The mixed physical states are assumed to be ,and
for which the flavor-glue content is taken from the mixing
calculations of other works. Since experimental data for these processes are
poor, our results are compared with those of a recent non-relativistic model
calculation. We find that while the relativistic corrections introduced by the
LFQM reduce the magnitudes of the decay widths by 50-70%, the relative
strengths between different decay processes are fairly well preserved. We also
calculate decay widths for the processes and
(0^{++})\to\gamma\gamm involving the light scalars and
to test the simple model of these mesons. Our results of
model for these processes are not quite consistent with well-established data,
further supporting the idea that and are not conventional
states.Comment: 10 pages, 4 figure
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
- …
