8,518 research outputs found
Experimental Studies on Slurry Based Thermal Barrier Coatings
Thermal barrier coatings were introduced to reduce operating temperatures and thermal stresses in structures and machine components across a wide range of industries and applications. The focus of the present study is to develop a new, relatively simple and low cost technique of manufacturing thermal barrier coatings based upon the slurry spray method. The challenge of this work is to make this technique comparable, in terms of the quality of the coating, to existing manufacturing methods, which are often expensive and inapplicable to coat large or curved surfaces. This paper describes the developed technique and selected results of thermo-mechanical testing of fabricated coatings including functionally graded coatings
A Scanned Perturbation Technique For Imaging Electromagnetic Standing Wave Patterns of Microwave Cavities
We have developed a method to measure the electric field standing wave
distributions in a microwave resonator using a scanned perturbation technique.
Fast and reliable solutions to the Helmholtz equation (and to the Schrodinger
equation for two dimensional systems) with arbitrarily-shaped boundaries are
obtained. We use a pin perturbation to image primarily the microwave electric
field amplitude, and we demonstrate the ability to image broken time-reversal
symmetry standing wave patterns produced with a magnetized ferrite in the
cavity. The whole cavity, including areas very close to the walls, can be
imaged using this technique with high spatial resolution over a broad range of
frequencies.Comment: To be published in Review of Scientific Instruments,September, 199
LIFTED CODES OVER FINITE CHAIN RINGS
In this paper, we study lifted codes over finite chain rings. We use γ-adic codes over a formal power series ring to study codes over finite chain rings
Gaseous, PM2.5 Mass, and Speciated Emission Factors from Laboratory Chamber Peat Combustion
Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82+/-0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 +/- 38 g kg(-1)) and lowest (1073 +/- 63 g kg(-1)) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are similar to 12 %15 % and similar to 0.3 %0.9 % of EFCO2, in the range of 157171 and 310 g kg(-1), respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 +/- 4.8 and 4.7 +/- 3.1 g kg(-1) for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9+/-1.1 g kg(-1) for EFNOx (nitrogen oxides); and 2.4+/-1.4 and 2.0 +/- 0.7 g kg(-1) for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of similar to 2 and similar to 7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by \u3e 4-fold (1461 g kg(-1)) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC / EFPM2.5 ratios in the range of 52 %98 % for fresh emissions and similar to 14 %23 % degradation after aging. Reductions of EFOC (similar to 79 g kg(-1)) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at \u3c 140 degrees C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (similar to 16 g kg(-1)), with similar to 35 %50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for similar to 20 %62 % of fresh EFOC. The majority (\u3e 95 %) of the total emitted carbon is in the gas phase, with 54 %75 % CO2, followed by 8 %30 % CO. Nitrogen in the measured species explains 24 %52 % of the consumed fuel nitrogen, with an average of 35 +/- 11 %, consistent with past studies that report similar to 1/3 to 2/3 of the fuel nitrogen measured in biomass smoke. The majority (\u3e 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN center dot N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories
Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China
Anhydrosugars including levoglucosan and mannosan are the most effective organic tracers for biomass burning aerosol in the atmosphere. In this study, to investigate the contribution of biomass burning emissions to the aerosol burden in the Pearl River Delta (PRD) region, China, 24-hour integrated PM2.5 samples were collected simultaneously at four locations, (i) Guangzhou (GZ), (ii) Zhaoqing (ZQ) in Guangdong province, (iii) Hok Tsui (HT) and (iv) Hong Kong Polytechnic University (PU) in Hong Kong, in four seasons between 2006 and 2007. Levoglucosan and mannosan, together with water-soluble inorganic ions and water-soluble organic carbon (WSOC), were determined to elucidate the seasonal and spatial variations in biomass burning contributions. The concentrations of levoglucosan and mannosan were on average 82.4±123 and 5.8±8.6 ng m−3, respectively. The WSOC concentrations ranged from 0.2 to 9.4 µg m−3, with an average of 2.1±1.6 µg m−3. The relative contributions of biomass burning emissions to OC were 33% in QZ, 12% in GZ, 4% at PU and 5% at HT, respectively, estimated by the measured levoglucosan to organic carbon ratio (LG/OC) relative to literature-derived LG/OC values. The contributions from biomass burning emissions were in general 1.7–2.8 times higher in winter than those in other seasons. Further, it was inferred from diagnostic tracer ratios that a significant fraction of biomass burning emissions was derived from burning of hard wood and likely also from field burning of agricultural residues, such as rice straw, in the PRD region. Our results highlight the contributions from biomass/biofuel burning activities on the regional aerosol budget in South China
Optimization Based Rate Control for Multicast with Network Coding
Recent advances in network coding have shown
great potential for efficient information multicasting in communication
networks, in terms of both network throughput and
network management. In this paper, we address the problem of
rate control at end-systems for network coding based multicast
flows. We develop two adaptive rate control algorithms for
the networks with given coding subgraphs and without given
coding subgraphs, respectively. With random network coding,
both algorithms can be implemented in a distributed manner, and
work at transport layer to adjust source rates and at network
layer to carry out network coding. We prove that the proposed
algorithms converge to the globally optimal solutions for intrasession
network coding. Some related issues are discussed, and
numerical examples are provided to complement our theoretical
analysis
Measurement of Wave Chaotic Eigenfunctions in the Time-Reversal Symmetry-Breaking Crossover Regime
We present experimental results on eigenfunctions of a wave chaotic system in
the continuous crossover regime between time-reversal symmetric and
time-reversal symmetry-broken states. The statistical properties of the
eigenfunctions of a two-dimensional microwave resonator are analyzed as a
function of an experimentally determined time-reversal symmetry breaking
parameter. We test four theories of one-point eigenfunction statistics and
introduce a new theory relating the one-point and two-point statistical
properties in the crossover regime. We also find a universal correlation
between the one-point and two-point statistical parameters for the crossover
eigenfunctions.Comment: 5 pages, 4 figures, submitted to Physical Review Letter
- …
