4,173 research outputs found
Non-Universal Effects in Semi-Inclusive B Decays
We show that most spectra in the semileptonic decay B -> X_u + l + nu, such
as for example the distribution in the light-cone momentum p_+ = E_X - p_X
recently considered, do not have the same long-distance structure of the photon
spectrum in the radiative decay B -> X_s + gamma. On the contrary, the
semileptonic distribution in the final hadron energy E_X is connected to the
radiative spectrum via short-distance factors only. The E_X distribution also
has a specific infrared structure known as the ``Sudakov shoulder''. We also
discuss an explicit check of the resummation formula for the semileptonic
decays, based on a recent second-order computation.Comment: LaTeX file, 6 pages, no figures. To appear in the Proceedings of the
7th International Symposium on Radiative Corrections (application of quantum
field theory to phenomenology) Shonan Village, Japan October 2-7, 2005 (Nucl.
Phys. B Proc. Suppl.
Report of the 2005 Snowmass Top/QCD Working Group
This report discusses several topics in both top quark physics and QCD at an
International Linear Collider (ILC). Issues such as measurements at the
threshold, including both theoretical and machine requirements, and
the determination of electroweak top quark couplings, are reviewed. New results
concerning the potential of a 500 GeV collider for measuring
couplings and the top quark Yukawa coupling are presented. The status of higher
order QCD corrections to jet production cross sections, heavy quark form
factors, and longitudinal gauge boson scattering, needed for percent-level
studies at the ILC, are reviewed. A new study of the measurement of the
hadronic structure of the photon at a collider is presented. The
effects on top quark properties from several models of new physics, including
composite models, Little Higgs theories, and CPT violation, are studied.Comment: 39 pages, many figs; typos fixed and refs added. Contributed to the
2005 International Linear Collider Physics and Detector Workshop and 2nd ILC
Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200
Top Quark Pair Production close to Threshold: Top Mass, Width and Momentum Distribution
The complete NNLO QCD corrections to the total cross section in the kinematic region close to the top-antitop
threshold are calculated by solving the corresponding Schroedinger equations
exactly in momentum space in a consistent momentum cutoff regularization
scheme. The corrections coming from the same NNLO QCD effects to the top quark
three-momentum distribution are determined. We discuss
the origin of the large NNLO corrections to the peak position and the
normalization of the total cross section observed in previous works and propose
a new top mass definition, the 1S mass M_1S, which stabilizes the peak in the
total cross section. If the influence of beamstrahlung and initial state
radiation on the mass determination is small, a theoretical uncertainty on the
1S top mass measurement of 200 MeV from the total cross section at the linear
collider seems possible. We discuss how well the 1S mass can be related to the
mass. We propose a consistent way to implement the top quark width
at NNLO by including electroweak effects into the NRQCD matching coefficients,
which then can become complex.Comment: 53 pages, latex; minor changes, a number of typos correcte
Acceleration of small astrophysical grains due to charge fluctuations
We discuss a novel mechanism of dust acceleration which may dominate for
particles smaller than m. The acceleration is caused by their
direct electrostatic interactions arising from fluctuations of grain charges.
The energy source for the acceleration are the irreversible plasma processes
occurring on the grain surfaces. We show that this mechanism of
charge-fluctuation-induced acceleration likely affects the rate of grain
coagulation and shattering of the population of small grains.Comment: 8 pages, 2 figures, revised version, submitted to Astrophysical
Journa
Inclusive Measure of |V_ub| with the Analytic Coupling Model
By analyzing B -> X_u l nu_l spectra with a model based on soft-gluon
resummation and an analytic time-like QCD coupling, we obtain |V_ub| = (3.76
+-0.13 +- 0.22)*10^(-3), where the first and the second error refers to
experimental and theoretical errors, respectively. The V_ub value is obtained
from the available measured semileptonic branching fractions in limited regions
of the phase-space. The distributions in the lepton energy E_l, the hadron
invariant mass m_X, the light-cone momentum P_+ = E_X - p_X, together with the
double distributions in (m_X,q^2) and (E_l,s_h^max), are used to select the
phase-space regions. The q^2 is the dilepton squared momentum and s_h^max is
the maximal m_X^2 at fixed q^2 and E_l. The V_ub value obtained is in complete
agreement with the value coming from exclusive B decays and from an over-all
fit to the Standard Model parameters. We show that the slight disagreement (up
to +2 sigma) with respect to previous inclusive measurements is not related to
different choices for the b (and c) masses but to a different modelling of the
threshold (Sudakov) region.Comment: 19 pages, 2 figures, revised version accepted in Eur.Phys.J.
The Threshold t-tbar Cross Section at NNLL Order
The total cross section for top quark pair production close to threshold in
e+e- annihilation is investigated. Details are given about the calculation at
next-to-next-to-leading logarithmic order. The summation of logarithms leads to
a convergent expansion for the normalization of the cross section, and small
residual dependence on the subtraction parameter nu. A detailed analysis of the
residual nu dependence is carried out. A conservative estimate for the
remaining uncertainty in the normalization of the total cross section from QCD
effects is . This makes precise extractions of the strong
coupling and top width feasible, and further studies of electroweak effects
mandatory.Comment: 33 pages, 11 figs, a program to produce the cross section will be
available soo
Top quark mass definition and top quark pair production near threshold at the NLC
We suggest an infrared-insensitive quark mass, defined by subtracting the
soft part of the quark self energy from the pole mass. We demonstrate the deep
relation of this definition with the static quark-antiquark potential. At
leading order in 1/m this mass coincides with the PS mass which is defined in a
completely different manner. Going beyond static limit, the small normalization
point introduces recoil corrections which are calculated here as well. Using
this mass concept and other concepts for the quark mass we calculate the cross
section of e+ e- -> t t-bar near threshold at NNLO accuracy adopting three
alternative approaches, namely (1) fixing the pole mass, (2) fixing the PS
mass, and (3) fixing the new mass which we call the PS-bar mass. We demonstrate
that perturbative predictions for the cross section become much more stable if
we use the PS or the PS-bar mass for the calculations. A careful analysis
suggests that the top quark mass can be extracted from a threshold scan at NLC
with an accuracy of about 100-200 MeV.Comment: published version, 21 pages in LaTeX including 11 PostScript figure
Dynamical Systems Gradient method for solving nonlinear equations with monotone operators
A version of the Dynamical Systems Gradient Method for solving ill-posed
nonlinear monotone operator equations is studied in this paper. A discrepancy
principle is proposed and justified. A numerical experiment was carried out
with the new stopping rule. Numerical experiments show that the proposed
stopping rule is efficient. Equations with monotone operators are of interest
in many applications.Comment: 2 figure
Vitrification of a monatomic 2D simple liquid
A monatomic simple liquid in two dimensions, where atoms interact
isotropically through the Lennard-Jones-Gauss potential [M. Engel and H.-R.
Trebin, Phys. Rev. Lett. 98, 225505 (2007)], is vitrified by the use of a rapid
cooling technique in a molecular dynamics simulation. Transformation to a
crystalline state is investigated at various temperatures and the
time-temperature-transformation (TTT) curve is determined. It is found that the
transformation time to a crystalline state is the shortest at a temerature 14%
below the melting temperature Tm and that at temperatures below Tv = 0.6 Tm the
transformation time is much longer than the available CPU time. This indicates
that a long-lived glassy state is realized for T < Tv.Comment: 5pages,5figures,accepted for publication in CEJ
Quarkonia and the Pole Mass
The pole mass of a heavy quark is ambiguous by an amount of order
. We show that the heavy-quark potential, , is similarly
ambiguous, but that the total static energy, , is unambiguous
when expressed in terms of a short-distance mass. This implies that the
extraction of a short-distance mass from the quarkonium spectrum is free of an
ambiguity of order , in contrast with the pole mass.Comment: 6 pages, LateX. Minor revisions for publicatio
- …
