3,682 research outputs found

    Molecular and Ionised Gas Motions in the Compact HII region G29.96-0.02

    Get PDF
    We present a new observation of the compact HII region, G29.96-0.02, that allows us to compare the velocity structure in the ionised gas and surrounding molecular gas directly. This allows us to remove most of the remaining ambiguity about the nature of this source. In particular, the comparison of the velocity structure present in the 4S-3P HeI lines with that found in the 1-0 S(1) of molecular hydrogern convincingly rules out a bow shock as being important to the kinematics of this source. Our new observation therefore agrees with our previous conclusion, drawn from a velocity resolved HI Br gamma map, that most of the velocity structure in G29.96-0.02 can largely be explained as a result of a champagne flow model. We also find that the best simple model must invoke a powerful stellar wind to evacuate the `head' of the cometary HII region of ionised gas. However, residual differences between model and data tend to indicate that no single simple model can adequately explain all the observed features.Comment: 10 pages, 4 postscript figures. To be published in MNRA

    Infrared Helium-Hydrogen Line Ratios as a Measure of Stellar Effective Temperature

    Get PDF
    We have observed a large sample of compact planetary nebulae in the near-infrared to determine how the 2^1P-2^1S HeI line at 2.058um varies as a function of stellar effective temperature, Teff. The ratio of this line with HI Br g at 2.166um has often been used as a measure of the highest Teff present in a stellar cluster, and hence on whether there is a cut-off in the stellar initial mass function at high masses. However, recent photoionisation modelling has revealed that the behaviour of this line is more complex than previously anticipated. Our work shows that in most aspects the photoionisation models are correct. In particular, we confirm the weakening of the 2^1P-2^1S as Teff increases beyond 40000K. However, in many cases the model underpredicts the observed ratio when we consider the detailed physical conditions in the individual planetary nebulae. Furthermore, there is evidence that there is still significant 2^1P-2^1S HeI line emission even in the planetary nebulae with very hot (Teff>100000K) central stars. It is clear from our work that this ratio cannot be considered as a reliable measure of effective temperature on its own.Comment: 24 pages 11 figures (in 62 separate postscript files) Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Near Infrared Spectra of Compact Planetary Nebulae

    Get PDF
    This paper continues our study of the behaviour of near infrared helium recombination lines in planetary nebula. We find that the 1.7007um 4^3D-3^3P HeI line is a good measure of the HeI recombination rate, since it varies smoothly with the effective temperature of the central star. We were unable to reproduce the observed data using detailed photoionisation models at both low and high effective temperatures, but plausible explanations for the difference exist for both. We therefore conclude that this line could be used as an indicator of the effective temperature in obscured nebula. We also characterised the nature of the molecular hydrogen emission present in a smaller subset of our sample. The results are consistent with previous data indicating that ultraviolet excitation rather than shocks is the main cause of the molecular hydrogen emission in planetary nebulae.Comment: Accepted for publication in MNRA

    Molecular cloud distance determination from deep NIR survey extinction measurements

    Full text link
    Using near infrared UKIDSS Galactic Plane Survey data, we make extinction measurements to individual stars along the same line of sight as molecular clouds. Using an existing 3D extinction map of the inner Galaxy, that provides line of sight specific extinction-distance relationships, we convert the measured extinction of molecular clouds to a corresponding distance. These distances are derived independently from kinematic methods, typically used to derive distances to molecular clouds, and as such they have no near/far ambiguity. The near/far distance ambiguity has been resolved for 27 clouds and distances have been derived to 20 clouds. The results are found to be in good agreement with kinematic measurements to molecular clouds where the ambiguity has already been resolved, using HI self-absorption techniques.Comment: MNRAS accepted: 07/05/201

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Helium and Hydrogen Line Ratios and The Stellar Content of Compact HII Regions

    Get PDF
    We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure' 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1)G-4^(3,1)F HeI recombination lines behave approximately as expected as the effective temperature of the central exciting star(s) increases. However, the 2.058um 2^1P-2^1S HeI line does not behave as the model predicts, or as seen in planetary nebulae. Both models and planetary nebulae showed a decrease in the HeI 2^1P-2^1S/HI Br gamma ratio above an effective temperature of 40000K. The compact HII regions do not show any such decrease. The problem with this line ratio is probably due to the fact that the photoionisation model does not account correctly for the high densities seen in these HII regions, and that we are therefore seeing more collisional excitation of the 2^1P level than the model predicts. It may also reflect some deeper problem in the assumed model stellar atmospheres. In any event, although the normal HeI recombination lines can be used to place constraints on the temperature of the hottest star present, the HeI 2^1P-2^1S/HI Br gamma ratio should not be used for this purpose in either Galactic HII regions or in starburst galaxies, and conclusions from previous work using this ratio should be regarded with extreme caution. We also show that the combination of the near infrared `pure' recombination line ratios with mid-infrared forbidden line data provides a good discriminant of the form of the far ultraviolet spectral energy distribution of the exciting star(s). From this we conclude that CoStar models are a poor match to the available data for our sources, though the more recent WM-basic models are a better fit.Comment: Accepted for publication in MNRA
    corecore