21 research outputs found
ForePass endoscopic bypass device for obesity and insulin resistance-metabolic treatment in a swine model
Referrals from community optometrists to the hospital eye service in Scotland and England
Objectives: This audit assesses communication between community optometrists (COs) and hospital eye service (HES) in Scotland and England. Methods: Optometric referrals and replies were extracted from six practices in Scotland and England. If no reply was found, replies/records were copied from HES records. De-identified referrals, replies and records were audited against established standards, evaluating whether referrals were necessary, accurate and directed to the appropriate professional. The referral rate (RR) and referral reply rate (RRR) were calculated. Results: From 905 de-identified referrals, RR ranged from 2.6 to 8.7%. From COs’ perspective, the proportion of referrals for which they received replies ranged from 37 to 84% (Scotland) and 26 to 49% (England). A total of 88–96% of referrals (Scotland) and 63–76% (England) were seen in the HES. Adjusting for cases when it is reasonable to expect replies, RRR becomes 45–92% (Scotland) and 38–62% (England) with RRR significantly greater in Scotland (P = 0.015). Replies were copied to patients in 0–21% of cases. Referrals were to the appropriate service and judged necessary in ≥90% of cases in both jurisdictions. Accuracy of referral ranged from 89 to 97% (Scotland) and 81 to 98% (England). The reply addressed the reason for referral in 94–100% of cases (Scotland) and 93–97% (England) and was meaningful in 95–100% (Scotland) and 94–99% (England). Conclusions: Despite the interdisciplinary joint statement on sharing patient information, this audit highlights variable standard of referrals and deficits in replies to the referring COs, with one exception in Scotland. Replies from HES to COs are important for patient care, benefitting patients and clinicians and minimising unnecessary HES appointments
Recommended from our members
Referrals from community optometrists to the hospital eye service in Scotland and England
OBJECTIVES: This audit assesses communication between community optometrists (COs) and hospital eye service (HES) in Scotland and England.
METHODS: Optometric referrals and replies were extracted from six practices in Scotland and England. If no reply was found, replies/records were copied from HES records. De-identified referrals, replies and records were audited against established standards, evaluating whether referrals were necessary, accurate and directed to the appropriate professional. The referral rate (RR) and referral reply rate (RRR) were calculated.
RESULTS: From 905 de-identified referrals, RR ranged from 2.6 to 8.7%. From COs' perspective, the proportion of referrals for which they received replies ranged from 37 to 84% (Scotland) and 26 to 49% (England). A total of 88-96% of referrals (Scotland) and 63-76% (England) were seen in the HES. Adjusting for cases when it is reasonable to expect replies, RRR becomes 45-92% (Scotland) and 38-62% (England) with RRR significantly greater in Scotland (P = 0.015). Replies were copied to patients in 0-21% of cases. Referrals were to the appropriate service and judged necessary in ≥90% of cases in both jurisdictions. Accuracy of referral ranged from 89 to 97% (Scotland) and 81 to 98% (England). The reply addressed the reason for referral in 94-100% of cases (Scotland) and 93-97% (England) and was meaningful in 95-100% (Scotland) and 94-99% (England).
CONCLUSIONS: Despite the interdisciplinary joint statement on sharing patient information, this audit highlights variable standard of referrals and deficits in replies to the referring COs, with one exception in Scotland. Replies from HES to COs are important for patient care, benefitting patients and clinicians and minimising unnecessary HES appointments
Anti-thrombotic efficacy of S007-867: Pre-clinical evaluation in experimental models of thrombosis in vivo and in vitro.
Pharmacological inhibition of platelet collagen interaction is a promising therapeutic strategy to treat intra-vascular thrombosis. S007-867 is a novel synthetic inhibitor of collagen-induced platelet aggregation. It has shown better antithrombotic protection than aspirin and clopidogrel with minimal bleeding tendency in mice. The present study is aimed to systematically investigate the antithrombotic efficacy of S007-867 in comparison to aspirin and clopidogrel in vivo and to delineate its mechanism of action in vitro. Aspirin, clopidogrel, and S007-867 significantly reduced thrombus weight in arterio-venous (AV) shunt model in rats. In mice, following ferric chloride induced thrombosis in either carotid or mesenteric artery; S007-867 significantly prolonged the vessel occlusion time (1.2-fold) and maintained a sustained blood flow velocity for >30 min. Comparatively, clopidogrel showed significant prolongation in TTO (1.3-fold) while aspirin remained ineffective. Both S007-867 and aspirin did not alter bleeding time in either kidney or spleen injury models, and thus maintained hemostasis, while clopidogrel showed significant increase in spleen bleeding time (1.7-fold). The coagulation parameters namely thrombin time, prothrombin time or activated partial thromboplastin time remained unaffected even at high concentration of S007-867 (300 µM), thus implying its antithrombotic effect to be primarily platelet mediated. S007-867 significantly inhibited collagen-mediated platelet adhesion and aggregation in mice ex-vivo. Moreover, when blood was perfused over a highly thrombogenic combination of collagen mimicking peptides like CRP-GFOGER-VWF-III, S007-867 significantly reduced total thrombus volume or ZV50 (53.4 ± 5.7%). Mechanistically, S007-867 (10-300 μM) inhibited collagen-induced ATP release, thromboxane A2 (TxA2) generation, intra-platelet [Ca+2] flux and global tyrosine phosphorylation including PLCγ2. Collectively the present study highlights that S007-867 is a novel synthetic inhibitor of collagen induced platelet activation, that effectively maintains blood flow velocity and delays vascular occlusion. It inhibits thrombogenesis without compromising hemostasis. Therefore, S007-867 may be further developed for the treatment of thrombotic disorders in clinical settings
Modulation of Insulin Resistance, Dyslipidemia and Serum Metabolome in iNOS Knockout Mice following Treatment with Nitrite, Metformin, Pioglitazone, and a Combination of Ampicillin and Neomycin
Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS-/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS-/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS-/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS-/- mice. Increased serum phosphatidylethanolamine lipids in iNOS-/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS-/- mice
Modulation of Insulin Resistance, Dyslipidemia and Serum Metabolome in iNOS Knockout Mice following Treatment with Nitrite, Metformin, Pioglitazone, and a Combination of Ampicillin and Neomycin
Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS-/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS-/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS-/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS-/- mice. Increased serum phosphatidylethanolamine lipids in iNOS-/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS-/- mice.</jats:p
Systemic Insulin Resistance and Metabolic Perturbations in Chow Fed Inducible Nitric Oxide Synthase Knockout Male Mice: Partial Reversal by Nitrite Supplementation
iNOS, an important mediator of inflammation, has emerged as an important metabolic regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to hyperglycemia/dyslipidemia in iNOS−/− mice. There are reports that high fat diet (HFD) fed mice exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS−/− mice were examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium nitrite supplementation (50 mg/L). In IR-iNOS−/− mice, we observed significantly higher body weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels, significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose tissue insulin signaling were only partially reversed in nitrite supplemented iNOS−/− mice. Our results thus demonstrate that nitrite supplementation to iNOS−/− mice improves insulin sensitivity and metabolic homeostasis, thus further highlighting the metabolic role of iNOS
Systemic Insulin Resistance and Metabolic Perturbations in Chow Fed Inducible Nitric Oxide Synthase Knockout Male Mice: Partial Reversal by Nitrite Supplementation
iNOS, an important mediator of inflammation, has emerged as an important metabolic regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to hyperglycemia/dyslipidemia in iNOS−/− mice. There are reports that high fat diet (HFD) fed mice exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS−/− mice were examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium nitrite supplementation (50 mg/L). In IR-iNOS−/− mice, we observed significantly higher body weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels, significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose tissue insulin signaling were only partially reversed in nitrite supplemented iNOS−/− mice. Our results thus demonstrate that nitrite supplementation to iNOS−/− mice improves insulin sensitivity and metabolic homeostasis, thus further highlighting the metabolic role of iNOS.</jats:p
Vasoreactivity of isolated aortic rings from dyslipidemic and insulin resistant inducible nitric oxide synthase knockout mice
Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria And Metabolites Remediate Insulin Resistance In INOS Knockout Mice
Abstract
Background: Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in absence of iNOS.Results: Insulin resistant and dyslipidemic iNOS-/- mice displayed reduced microbial diversity, with a higher relative abundance of the gram-positive bacteria, Allobaculum and Bifidobacterium, and altered serum metabolites linked with the metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic abnormalities in iNOS-/- mice. Such correction in metabolic markers was accompanied by reduced the expression of genes involved in fatty acid synthesis in liver and adipose tissue, decreased lipid uptake by adipose tissue and enhanced lipid efflux by liver and intestine. Rescue of IR in vancomycin treated iNOS-/- mice was associated with the alterations in the select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio.Conclusions: Vancomycin-mediated depletion of gram-positive bacteria negates the detrimental metabolic effect, dyslipidemia and IR, observed in iNOS-/- mice.</jats:p
