3,358 research outputs found
Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo
While the use of bioluminescent proteins for molecular imaging is a powerful technology to further our understanding of complex processes, fluorescent labeling with visible light fluorescent proteins such as GFP and RFP suffers from poor tissue penetration and high background autofluorescence. To overcome these limitations, we generated an inducible knock-in mouse model of iRFP713. This model was used to assess Cre activity in a Rosa Cre-ER background and quantify Cre activity upon different tamoxifen treatments in several organs. We also show that iRFP can be readily detected in 3D organoid cultures, FACS analysis and in vivo tumour models. Taken together we demonstrate that iRFP713 is a progressive step in in vivo imaging and analysis that widens the optical imaging window to the near-infrared spectrum, thereby allowing deeper tissue penetration, quicker image acquisition without the need to inject substrates and a better signal to background ratio in genetically engineered mouse models (GEMMs)
New model of calculating the energy transfer efficiency for the spherical theta-pinch device
Ion-beam-plasma-interaction plays an important role in the field of Warm
Dense Matter (WDM) and Inertial Confinement Fusion (ICF). A spherical theta
pinch is proposed to act as a plasma target in various applications including a
plasma stripper cell. One key parameter for such applications is the free
electron density. A linear dependency of this density to the amount of energy
transferred into the plasma from an energy storage was found by C. Teske. Since
the amount of stored energy is known, the energy transfer efficiency is a
reliable parameter for the design of a spherical theta pinch device. The
traditional two models of energy transfer efficiency are based on assumptions
which comprise the risk of systematical errors. To obtain precise results, this
paper proposes a new model without the necessity of any assumption to calculate
the energy transfer efficiency for an inductively coupled plasma device.
Further, a comparison of these three different models is given at a fixed
operation voltage for the full range of working gas pressures. Due to the
inappropriate assumptions included in the traditional models, one owns a
tendency to overestimate the energy transfer efficiency whereas the other leads
to an underestimation. Applying our new model to a wide spread set of operation
voltages and gas pressures, an overall picture of the energy transfer
efficiency results
Learning with multiple representations: An example of a revision lesson in mechanics
We describe an example of learning with multiple representations in an
A-level revision lesson on mechanics. The context of the problem involved the
motion of a ball thrown vertically upwards in air and studying how the
associated physical quantities changed during its flight. Different groups of
students were assigned to look at the ball's motion using various
representations: motion diagrams, vector diagrams, free-body diagrams, verbal
description, equations and graphs, drawn against time as well as against
displacement. Overall, feedback from students about the lesson was positive. We
further discuss the benefits of using computer simulation to support and extend
student learning.Comment: 10 pages, 5 figures, 2 tables http://iopscience.iop.org/0031-912
A Droplet State in an Interacting Two-Dimensional Electron System
It is well known that the dielectric constant of two-dimensional (2D)
electron system goes negative at low electron densities. A consequence of the
negative dielectric constant could be the formation of the droplet state. The
droplet state is a two-phase coexistence region of high density liquid and low
density "gas". In this paper, we carry out energetic calculations to study the
stability of the droplet ground state. The possible relevance of the droplet
state to recently observed 2D metal-insulator transition is also discussed.Comment: 4 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications
Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results
The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments
Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)
International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth
Integrating the promotion of physical activity within a smoking cessation programme: Findings from collaborative action research in UK Stop Smoking Services
Background: Within the framework of collaborative action research, the aim was to explore the feasibility of
developing and embedding physical activity promotion as a smoking cessation aid within UK 6/7-week National
Health Service (NHS) Stop Smoking Services.
Methods: In Phase 1 three initial cycles of collaborative action research (observation, reflection, planning,
implementation and re-evaluation), in an urban Stop Smoking Service, led to the development of an integrated
intervention in which physical activity was promoted as a cessation aid, with the support of a theoretically based
self-help guide, and self monitoring using pedometers. In Phase 2 advisors underwent training and offered the
intervention, and changes in physical activity promoting behaviour and beliefs were monitored. Also, changes in
clients’ stage of readiness to use physical activity as a cessation aid, physical activity beliefs and behaviour and
physical activity levels were assessed, among those who attended the clinic at 4-week post-quit. Qualitative data
were collected, in the form of clinic observation, informal interviews with advisors and field notes.
Results: The integrated intervention emerged through cycles of collaboration as something quite different to
previous practice. Based on field notes, there were many positive elements associated with the integrated
intervention in Phase 2. Self-reported advisors’ physical activity promoting behaviour increased as a result of
training and adapting to the intervention. There was a significant advancement in clients’ stage of readiness to use physical activity as a smoking cessation aid.
Conclusions: Collaboration with advisors was key in ensuring that a feasible intervention was developed as an aid to smoking cessation. There is scope to further develop tailored support to increasing physical activity and
smoking cessation, mediated through changes in perceptions about the benefits of, and confidence to do physical activity
Quasi-ballistic transport in HgTe quantum-well nanostructures
The transport properties of micrometer scale structures fabricated from
high-mobility HgTe quantum-wells have been investigated. A special photoresist
and Ti masks were used, which allow for the fabrication of devices with
characteristic dimensions down to 0.45 m. Evidence that the transport
properties are dominated by ballistic effects in these structures is presented.
Monte Carlo simulations of semi-classical electron trajectories show good
agreement with the experiment.Comment: 3 pages, 3 figures; minor revisions: replaced "inelastic mean free
path" with "transport mean free path"; corrected typing errors; restructered
most paragraphs for easier reading; accepted for publication in AP
- …
