379 research outputs found
Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)
The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder diffraction. Contrary to previous reports of an unusual rhombohedral-tetragonal phase transition in this system, we have observed an intermediate orthorhombic phase, isostructural to that present in the parent phase, BaTiO3, and we identify the previously assigned T-R transition as a T-O transition. We also observe the O-R transition coalescing with the previously observed triple point, forming a phase convergence region. The implication of the orthorhombic phase in reconciling the exceptional piezoelectric properties with the surrounding phase diagram is discussed
Resonant X-ray diffraction studies on the charge ordering in magnetite
Here we show that the low temperature phase of magnetite is associated with
an effective, although fractional, ordering of the charge. Evidence and a
quantitative evaluation of the atomic charges are achieved by using resonant
x-ray diffraction (RXD) experiments whose results are further analyzed with the
help of ab initio calculations of the scattering factors involved. By
confirming the results obtained from X-ray crystallography we have shown that
RXD is able to probe quantitatively the electronic structure in very complex
oxides, whose importance covers a wide domain of applications.Comment: 4 pages 4 figures, accepted for publication in PR
Structural and magnetic properties of CoPt mixed clusters
In this present work, we report a structural and magnetic study of mixed
Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters,
avoiding any magnetic interactions between particles. Transmission Electron
Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters
are about 2nm in diameter and crystallized in the A1 fcc chemically disordered
phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing
Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters
conserve these properties, interaction with matrix atoms being limited to their
first atomic layers. Considering that 60% of particle atoms are located at
surface, this interactions leads to a drastic change in magnetic properties
which were investigated with conventional magnetometry and X-Ray Magnetic
Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are
weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon
as silicides are formed. Magnetic volume of clusters embedded in MgO is close
to the crystallized volume determined by GIWAXS experiments. Cluster can be
seen as a pure ferromagnetic CoPt crystallized core surrounded by a
cluster-matrix mixed shell. The outer shell plays a predominant role in
magnetic properties, especially for clusters embedded in niobium which have a
blocking temperature 3 times smaller than clusters embedded in MgO
Step by step capping and strain state of GaN/AlN quantum dots studied by grazing incidence diffraction anomalous fine structure
The investigation of small size embedded nanostructures, by a combination of
complementary anomalous diffraction techniques, is reported. GaN Quantum Dots
(QDs), grown by molecular beam epitaxy in a modified Stranski-Krastanow mode,
are studied in terms of strain and local environment, as a function of the AlN
cap layer thickness, by means of grazing incidence anomalous diffraction. That
is, the X-ray photons energy is tuned across the Ga absorption K-edge which
makes diffraction chemically selective. Measurement of \textit{hkl}-scans,
close to the AlN (30-30) Bragg reflection, at several energies across the Ga
K-edge, allows the extraction of the Ga partial structure factor, from which
the in-plane strain of GaN QDs is deduced. From the fixed-Q energy-dependent
diffracted intensity spectra, measured for diffraction-selected iso-strain
regions corresponding to the average in-plane strain state of the QDs,
quantitative information regarding composition and the out-of-plane strain has
been obtained. We recover the in-plane and out-of-plane strains in the dots.
The comparison to the biaxial elastic strain in a pseudomorphic layer indicates
a tendency to an over-strained regime.Comment: submitted to PR
Low-temperature structure of magnetite studied using resonant x-ray scattering
13 pagesInternational audienceWe propose a model for the Fe atomic displacements in the low-temperature phase of magnetite Fe3O4 , based on the analysis of the photon energy dependence of the scattered intensity of selected reflections in a resonant x-ray scattering experiment. The symmetry of the displacement pattern is forced to be consistent with the Cc space group, long time claimed to be the actual symmetry of the low-temperature phase. Fe positions at octahedral sites and the corresponding charges are accounted for by a fitting procedure comparing simulations and experiment.We found a pattern of small distortions in the a-b plane. An independent sensitivity to the charge occupancy permits to refine the model of charge ordering previously proposed. Finally we have computed the electric moment of the combined charge displacements to be 1.5 C/cm2
X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave
We report time-resolved x-ray scattering measurements of the transient
structural response of the sliding {\bf Q} charge-density-wave (CDW) in
NbSe to a reversal of the driving electric field. The observed time scale
characterizing this response at 70K varies from 15 msec for driving
fields near threshold to 2 msec for fields well above threshold. The
position and time-dependent strain of the CDW is analyzed in terms of a
phenomenological equation of motion for the phase of the CDW order parameter.
The value of the damping constant, eV
seconds \AA, is in excellent agreement with the value
determined from transport measurements. As the driving field approaches
threshold from above, the line shape becomes bimodal, suggesting that the CDW
does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure
X-ray anomalous scattering investigations on the charge order in -NaVO
Anomalous x-ray diffraction studies show that the charge ordering in
-NaVO is of zig-zag type in all vanadium ladders. We
have found that there are two models of the stacking of layers along
\emph{c-}direction, each of them consisting of 2 degenerated patterns, and that
the experimental data is well reproduced if the 2 patterns appears
simultaneously. We believe that the low temperature structure contains stacking
faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the
tex
Detailed Structure of a CDW in a Quenched Random Field
Using high resolution x-ray scattering, we have measured the structure of the
Q_1 CDW in Ta-doped NbSe_3. Detailed line shape analysis of the data
demonstrates that two length scales are required to describe the phase-phase
correlation function. Phase fluctuations with wavelengths less than a new
length scale are suppressed and this is identified with the amplitude
coherence length. We find that xi_a* = 34.4 \pm 10.3 angstroms. Implications
for the physical mechanisms responsible for pinning are discussed.Comment: revtex 3.0, 3 postscript uuencoded figure
Molecular organization in the twist–bend nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS, WAXS and GIXRD
Using a magnetically aligned liquid crystal mixture containing a novel Se-labelled dimer and the difluoroterphenyl dimer DTC5C7, the twist–bend nematic phase (Ntb) was studied by the resonant scattering of hard X-rays and by conventional small and wide-angle X-ray scattering (SAXS, WAXS). Resonant diffraction spots indicated a helix with a 9–12 nm pitch in the Ntb phase and an unprecedentedly high helix orientation. This enabled deconvolution of global and local order parameters. These findings, combined with the simultaneously recorded resonant and non-resonant SAXS and WAXS data, allowed us to construct a locally layered molecular model of the Ntb phase, where the average twisted conformation of each molecule was idealised as a helical segment, matching the local heliconical director field. The dimers were found to be less bent in the Ntb phase than in their minimum energy conformation, and straightening further with increasing temperature. It is proposed that on further heating their low bend angle allows the transition to the normal nematic phase, where the molecules can freely move longitudinally, without the need to perform screw-like motion as in the Ntb phase. At the low-temperature end, the increasing molecular twist becomes unsustainable, leading to a transition to a smectic phase, where no twist is required
- …
