5,935 research outputs found
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Structurally perturbed chiral Bragg reflectors for elliptically polarized light
The structure of an inorganic chiral medium represented as a stack of identical form-birefringent layers that twist steadily with increasing thickness is perturbed by realigning a fraction of each layer to a fixed direction. Experimental results show that the resulting chiral-birefringent composite medium exhibits Bragg resonance with elliptically polarized light, and simulations indicate that Bragg reflectors can be designed for any polarization including linear. © 2005 Optical Society of America
Tan(beta) enhanced Yukawa couplings for supersymmetric Higgs singlets at one loop
Extensions of the MSSM generically feature gauge singlet Higgs bosons. These
singlet Higgs bosons have tan(beta)-enhanced Yukawa couplings to down-type
quarks and leptons at the one-loop level. We present an effective Lagrangian
incorporating these Yukawa couplings and use it to study their effect on
singlet Higgs boson phenomenology within both the mnSSM and NMSSM. It is found
that the loop-induced couplings represent an appreciable effect for the singlet
pseudoscalar in particular, and may dominate its decay modes in some regions of
parameter space.Comment: Submitted for the SUSY07 proceedings, 4 pages, 5 figure
Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures
The combination of large thickness ( m), large--area uniformity (75
mm diameter), high growth rate (up to 0.4 m/min) in assemblies of
complex--shaped nanowires on lithographically defined patterns has been
achieved for the first time. The nanoscale and the microscale have thus been
blended together in sculptured thin films with transverse architectures.
SiO () nanowires were grown by electron--beam evaporation onto
silicon substrates both with and without photoresist lines (1--D arrays) and
checkerboard (2--D arrays) patterns. Atomic self--shadowing due to
oblique--angle deposition enables the nanowires to grow continuously, to change
direction abruptly, and to maintain constant cross--sectional diameter. The
selective growth of nanowire assemblies on the top surfaces of both 1--D and
2--D arrays can be understood and predicted using simple geometrical shadowing
equations.Comment: 17 pages, 9 figure
Scalable design of tailored soft pulses for coherent control
We present a scalable scheme to design optimized soft pulses and pulse
sequences for coherent control of interacting quantum many-body systems. The
scheme is based on the cluster expansion and the time dependent perturbation
theory implemented numerically. This approach offers a dramatic advantage in
numerical efficiency, and it is also more convenient than the commonly used
Magnus expansion, especially when dealing with higher order terms. We
illustrate the scheme by designing 2nd-order pi-pulses and a 6th-order 8-pulse
refocusing sequence for a chain of qubits with nearest-neighbor couplings. We
also discuss the performance of soft-pulse refocusing sequences in suppressing
decoherence due to low-frequency environment.Comment: 4 pages, 2 tables. (modified first table, references added, minor
text changes
The Mersey Estuary : sediment geochemistry
This report describes a study of the geochemistry of
the Mersey estuary carried out between April 2000 and
December 2002. The study was the first in a new programme
of surveys of the geochemistry of major British estuaries
aimed at enhancing our knowledge and understanding of the
distribution of contaminants in estuarine sediments.
The report first summarises the physical setting, historical
development, geology, hydrography and bathymetry of the
Mersey estuary and its catchment. Details of the sampling
and analytical programmes are then given followed by a
discussion of the sedimentology and geochemistry. The
chemistry of the water column and suspended particulate
matter have not been studied, the chief concern being with
the geochemistry of the surface and near-surface sediments
of the Mersey estuary and an examination of their likely
sources and present state of contamination
Recommended from our members
Locating customer value in contracting-out decisions in English local authorities
Thin-Film Metamaterials called Sculptured Thin Films
Morphology and performance are conjointed attributes of metamaterials, of
which sculptured thin films (STFs) are examples. STFs are assemblies of
nanowires that can be fabricated from many different materials, typically via
physical vapor deposition onto rotating substrates. The curvilinear--nanowire
morphology of STFs is determined by the substrate motions during fabrication.
The optical properties, especially, can be tailored by varying the morphology
of STFs. In many cases prototype devices have been fabricated for various
optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009,
Sibiu, Romania
Theory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 m on InP substrates
We present a theoretical analysis and optimisation of the properties and
performance of mid-infrared semiconductor lasers based on the dilute bismide
alloy InGaAsBi, grown on conventional (001) InP
substrates. The ability to independently vary the epitaxial strain and emission
wavelength in this quaternary alloy provides significant scope for band
structure engineering. Our calculations demonstrate that structures based on
compressively strained InGaAsBi quantum wells (QWs)
can readily achieve emission wavelengths in the 3 -- 5 m range, and that
these QWs have large type-I band offsets. As such, these structures have the
potential to overcome a number of limitations commonly associated with this
application-rich but technologically challenging wavelength range. By
considering structures having (i) fixed QW thickness and variable strain, and
(ii) fixed strain and variable QW thickness, we quantify key trends in the
properties and performance as functions of the alloy composition, structural
properties, and emission wavelength, and on this basis identify routes towards
the realisation of optimised devices for practical applications. Our analysis
suggests that simple laser structures -- incorporating
InGaAsBi QWs and unstrained ternary
InGaAs barriers -- which are compatible with established
epitaxial growth, provide a route to realising InP-based mid-infrared diode
lasers.Comment: Submitted versio
- …
