4,059 research outputs found
Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota
Managing urban socio-technical change? Comparing energy technology controversies in three European contexts
A {\em local graph partitioning algorithm} finds a set of vertices with small
conductance (i.e. a sparse cut) by adaptively exploring part of a large graph
, starting from a specified vertex. For the algorithm to be local, its
complexity must be bounded in terms of the size of the set that it outputs,
with at most a weak dependence on the number of vertices in . Previous
local partitioning algorithms find sparse cuts using random walks and
personalized PageRank. In this paper, we introduce a randomized local
partitioning algorithm that finds a sparse cut by simulating the {\em
volume-biased evolving set process}, which is a Markov chain on sets of
vertices. We prove that for any set of vertices that has conductance at
most , for at least half of the starting vertices in our algorithm
will output (with probability at least half), a set of conductance
. We prove that for a given run of the algorithm,
the expected ratio between its computational complexity and the volume of the
set that it outputs is . In comparison, the best
previous local partitioning algorithm, due to Andersen, Chung, and Lang, has
the same approximation guarantee, but a larger ratio of between the complexity and output volume. Using our local
partitioning algorithm as a subroutine, we construct a fast algorithm for
finding balanced cuts. Given a fixed value of , the resulting algorithm
has complexity and returns a cut with
conductance and volume at least ,
where is the largest volume of any set with conductance at most
.Comment: 20 pages, no figure
Recommended from our members
Crystallization of calcite from amorphous calcium carbonate: earthworms show the way
No abstract available
Recommended from our members
Weathering microenvironments on feldspar surfaces: implications for understanding fluid-mineral reactions in soils
The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural weathering contexts. The weathering products comprise sub-μm thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after ∼1.1 ky are insufficiently continuous or impermeable to slow rates of fluid-feldspar reactions, but provide valuable insights into the complex weathering microenvironments on debris and microbe-covered mineral surfaces
Recommended from our members
Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate
In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO3. Initially a milky fluid comprising micro-spherules of amorphous CaCO3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO3 present and by IRMS to determine δ13C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ13C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p < 0.001). For samples from each temperature treatment, δ13C values became significantly (p < 0.001) more negative from the milky fluid to the pouch granules to the soil granules (-13.77, -14.69 and -15.00 respectively at 10 °C; -14.37, -15.07 and -15.18 respectively at 16 °C and -14.89, -15.41 and -15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor εcalcite-ACC = -1.20 ± 0.52 %0. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon and various CaCO3 polymorphs, this is the first documented evidence for C isotope fractionation between ACC and the calcite it recrystallizes to. This phenomenon may prove important for the interpretation of CaCO3-based C isotope environmental proxies
Recommended from our members
Do earthworms impact metal mobility and availability in soil? A review
The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this. (C) 2009 Elsevier Ltd. All rights reserved
Recommended from our members
Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested
to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora
chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113
and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free
columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate
downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different
ecological groups affected metals in the same way by increasing concentrations and free ion activities in
leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by
267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass
grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited
greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading
to release of organically bound elements. The degradation of organic matter also releases organic acids
which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase
the rate of a process that is already occurring. The impact of earthworms on metal mobility and
availability should therefore be considered when inoculating earthworms into contaminated soils as
new pathways to receptors may be created or the flow of metals and metalloids to receptors may be
elevated
Recommended from our members
Soil pH governs production rate of calcium carbonate secreted by the earthworm Lumbricus terrestris
Lumbricus terrestris earthworms exposed to 11 soils of contrasting properties produced, on average, 0.8 ± 0.1 mgCaCO3 earthworm−1 day−1 in the form of granules up to 2 mm in diameter. Production rate increased with soil pH (r2 = 0.68, p < 0.01). Earthworms could be a significant source of calcite in soils
- …
