881 research outputs found
Optimally Stabilized PET Image Denoising Using Trilateral Filtering
Low-resolution and signal-dependent noise distribution in positron emission
tomography (PET) images makes denoising process an inevitable step prior to
qualitative and quantitative image analysis tasks. Conventional PET denoising
methods either over-smooth small-sized structures due to resolution limitation
or make incorrect assumptions about the noise characteristics. Therefore,
clinically important quantitative information may be corrupted. To address
these challenges, we introduced a novel approach to remove signal-dependent
noise in the PET images where the noise distribution was considered as
Poisson-Gaussian mixed. Meanwhile, the generalized Anscombe's transformation
(GAT) was used to stabilize varying nature of the PET noise. Other than noise
stabilization, it is also desirable for the noise removal filter to preserve
the boundaries of the structures while smoothing the noisy regions. Indeed, it
is important to avoid significant loss of quantitative information such as
standard uptake value (SUV)-based metrics as well as metabolic lesion volume.
To satisfy all these properties, we extended bilateral filtering method into
trilateral filtering through multiscaling and optimal Gaussianization process.
The proposed method was tested on more than 50 PET-CT images from various
patients having different cancers and achieved the superior performance
compared to the widely used denoising techniques in the literature.Comment: 8 pages, 3 figures; to appear in the Lecture Notes in Computer
Science (MICCAI 2014
Tight bounds for classical and quantum coin flipping
Coin flipping is a cryptographic primitive for which strictly better
protocols exist if the players are not only allowed to exchange classical, but
also quantum messages. During the past few years, several results have appeared
which give a tight bound on the range of implementable unconditionally secure
coin flips, both in the classical as well as in the quantum setting and for
both weak as well as strong coin flipping. But the picture is still incomplete:
in the quantum setting, all results consider only protocols with perfect
correctness, and in the classical setting tight bounds for strong coin flipping
are still missing. We give a general definition of coin flipping which unifies
the notion of strong and weak coin flipping (it contains both of them as
special cases) and allows the honest players to abort with a certain
probability. We give tight bounds on the achievable range of parameters both in
the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio
Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition
Niobium nitride (NbN) is widely used in high-frequency superconducting
electronics circuits because it has one of the highest superconducting
transition temperatures ( 16.5 K) and largest gap among
conventional superconductors. In its thin-film form, the of NbN is very
sensitive to growth conditions and it still remains a challenge to grow NbN
thin film (below 50 nm) with high . Here, we report on the superconducting
properties of NbN thin films grown by high-temperature chemical vapor
deposition (HTCVD). Transport measurements reveal significantly lower disorder
than previously reported, characterized by a Ioffe-Regel ()
parameter of 14. Accordingly we observe 17.06 K (point of
50% of normal state resistance), the highest value reported so far for films of
thickness below 50 nm, indicating that HTCVD could be particularly useful for
growing high quality NbN thin films
Transformed Dissipation in Superconducting Quantum Circuits
Superconducting quantum circuits must be designed carefully to avoid
dissipation from coupling to external control circuitry. Here we introduce the
concept of current transformation to quantify coupling to the environment. We
test this theory with an experimentally-determined impedance transformation of
and find quantitative agreement better than a factor of 2 between
this transformation and the reduced lifetime of a phase qubit coupled to a
tunable transformer. Higher-order corrections from quantum fluctuations are
also calculated with this theory, but found not to limit the qubit lifetime. We
also illustrate how this simple connection between current and impedance
transformation can be used to rule out dissipation sources in experimental
qubit systems.Comment: 4 pages, 4 figure
Quantum Non-demolition Detection of Single Microwave Photons in a Circuit
Thorough control of quantum measurement is key to the development of quantum
information technologies. Many measurements are destructive, removing more
information from the system than they obtain. Quantum non-demolition (QND)
measurements allow repeated measurements that give the same eigenvalue. They
could be used for several quantum information processing tasks such as error
correction, preparation by measurement, and one-way quantum computing.
Achieving QND measurements of photons is especially challenging because the
detector must be completely transparent to the photons while still acquiring
information about them. Recent progress in manipulating microwave photons in
superconducting circuits has increased demand for a QND detector which operates
in the gigahertz frequency range. Here we demonstrate a QND detection scheme
which measures the number of photons inside a high quality-factor microwave
cavity on a chip. This scheme maps a photon number onto a qubit state in a
single-shot via qubit-photon logic gates. We verify the operation of the device
by analyzing the average correlations of repeated measurements, and show that
it is 90% QND. It differs from previously reported detectors because its
sensitivity is strongly selective to chosen photon number states. This scheme
could be used to monitor the state of a photon-based memory in a quantum
computer.Comment: 5 pages, 4 figures, includes supplementary materia
Social media, protest cultures and political subjectivities of the Arab spring
This article draws on phenomenological perspectives to present a case against resisting the objectification of cultures of protest and dissent. The generative, self-organizing properties of protest cultures, especially as mobilized through social media, are frequently argued to elude both authoritarian political structures and academic discourse, leading to new political subjectivities or ‘imaginaries’. Stemming from a normative commitment not to over-determine such nascent subjectivities, this view has taken on a heightened resonance in relation to the recent popular uprisings in the Middle East and North Africa. The article argues that this view is based on an invalid assumption that authentic political subjectivities and cultures naturally emerge from an absence of constraint, whether political, journalistic or academic. The valorisation of amorphousness in protest cultures and social media enables affective and political projection, but overlooks politics in its institutional, professional and procedural forms
Secure certification of mixed quantum states with application to two-party randomness generation
We investigate sampling procedures that certify that an arbitrary quantum
state on subsystems is close to an ideal mixed state
for a given reference state , up to errors on a few positions. This
task makes no sense classically: it would correspond to certifying that a given
bitstring was generated according to some desired probability distribution.
However, in the quantum case, this is possible if one has access to a prover
who can supply a purification of the mixed state.
In this work, we introduce the concept of mixed-state certification, and we
show that a natural sampling protocol offers secure certification in the
presence of a possibly dishonest prover: if the verifier accepts then he can be
almost certain that the state in question has been correctly prepared, up to a
small number of errors.
We then apply this result to two-party quantum coin-tossing. Given that
strong coin tossing is impossible, it is natural to ask "how close can we get".
This question has been well studied and is nowadays well understood from the
perspective of the bias of individual coin tosses. We approach and answer this
question from a different---and somewhat orthogonal---perspective, where we do
not look at individual coin tosses but at the global entropy instead. We show
how two distrusting parties can produce a common high-entropy source, where the
entropy is an arbitrarily small fraction below the maximum (except with
negligible probability)
- …
