261 research outputs found

    Expansive Learning

    Get PDF
    Chapter six explores the concept of ‘expansive learning’ taken from Fuller and Unwin’s (2003) research of apprenticeships where they identified a ‘restrictive- expansive continuum’ that classified the type of learning environment presented in the work place. Crucially, expansive learning encouraged a supportive environment for students to learn higher level skills such as dialogue, problem solving and reflexive forms of expertise. Supportive and collaborative learning environments can instil confidence in the student to develop and the supervisory role (or previously the mentor) is significant to this. The chapter theme of expansive learning is led by the goal to discover what teaching and learning processes can assist all levels of clinical staff in supporting students to move effectively, and in a well-supported way, to the expertise or ‘graduateness’ (Eden, 2014) required at registration and beyond. This was an important foundation of the recent NMC (2017) review. Chapter 2 and 3 have already demonstrated the potential educational role of unqualified staff and peer students who previously have not been officially recognised for coaching learners in practice. With focused and explicit support for their learning, students’ placement experience can be ‘supercharged’ so their learning advances quicker and with greater impact on their long term professional development (Morley, 2018). A model of coaching that emerged from the research study is also presented. Current emphasis in practice learning is placed on the assessment of measurable clinical skills rather than the students’ ability to join these skills holistically in professional practice (Morley, 2015). The ability to be able to teach this type of integration of student performance into the busy clinical practice is more akin to the fluidity of ‘coaching’ rather than ‘teaching’ and this is explored fully within the chapter

    Flexural response of polypropylene/E-glass fibre reinforced unidirectional composites

    Get PDF
    This paper presents a study of the flexural response of continuous E-glass fibre reinforced polypropylene composites. Experiments were designed to investigate monotonic and cyclic flexural response using three point bending test for laminates with different angle-ply and cross-ply arrangements. Results show that the monotonic and cyclic flexural response of the composites are influenced by the plastic deformation of the matrix. The study observed that increasing numbers of cyclic loads led to significant energy dissipation, stiffness reduction and micro-damage accumulation within the composite and especially at the matrix-fibre interface. Significant energy dissipation and damage were observed to dominate the first load-unload cycle. With subsequent cycles, the magnitude of energy dissipation and global damage reduces to a threshold value which is cycle independent. This study has also developed a phenomenological model to predict the dependence of energy dissipation with number of cycles. The experimental data generated here will be useful in the development of holistic macroscale constitutive models and finite element studies of the chosen test composite

    Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    Get PDF
    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry

    Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    Get PDF
    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry

    Structural Integrity of Single Shell Tanks at Hanford -9491

    Get PDF
    ABSTRACT The 149 Single Shell Tanks at the Hanford Site were constructed between the 1940's and the 1960's. Many of the tanks are either known or suspected to have leaked in the past. While the free liquids have been removed from the tanks, they still contain significant waste volumes. Recently, the tank farm operations contractor established a Single Shell Tank Integrity Program. Structural integrity is one aspect of the program. The structural analysis of the Single Shell Tanks has several challenging factors. There are several tank sizes and configurations that need to be analyzed. Tank capacities range from fifty-five thousand gallons to one million gallons. The smallest tank type is approximately twenty feet in diameter, and the three other tank types are all seventy-five feet in diameter. Within each tank type there are varying concrete strengths, types of steel, tank floor arrangements, in-tank hardware, riser sizes and locations, and other appurtenances that need to be addressed. Furthermore, soil properties vary throughout the tank farms. The Pacific Northwest National Laboratory has been conducting preliminary structural analyses of the various single shell tank types to address these parameters. The preliminary analyses will assess which aspects of the tanks will require further detailed analysis. Evaluation criteria to which the tanks will be analyzed are also being developed for the Single Shell Tank Integrity Program. This information will be reviewed by the Single Shell Tank Integrity Expert Panel that has been formed to issue recommendations to the DOE and to the tank farm operations contractor regarding Single Shell Tank Integrity. This paper provides a summary of the preliminary analysis of the single shell tanks, a summary of the recommendations for the detailed analyses, and the proposed evaluation criteria by which the tanks will be judged

    Designing and Supporting Extraordinary Work Experience

    Get PDF
    “There is a big difference between a lesson that is about the practice and takes place outside of it, and explanations and stories that are part of the practice and take place within it” (Wenger, Communities of practice. Learning, meaning and identity. Cambridge University Press, New York, 1998, p. 100).The real world learning experienced by students on placement is highly significant (Morley, Enhancing employability in higher education through work based learning. Palgrave Macmillan, 2018). This chapter focuses on how these experiences can be accelerated from being part of courses to a pivotal event towards students’ future development.The chapter explores emerging areas of practice pedagogy and how innovative design can bridge the theory-practice divide and support structures between university and work. The chapter is contextualised in the higher education landscape where students ‘work readiness’ is gaining greater traction and how attributes for employability are developed during university

    A comprehensive review of techniques for natural fibers as reinforcement in composites::preparation, processing and characterization

    Get PDF
    Designing environmentally friendly materials from natural resources represents a great challenge in the last decade. However, the lack of fundamental knowledge in the processing of the raw materials to fabricate the composites structure is still a major challenge for potential applications.Natural fibers extracted from plants are receiving more attention from researchers, scientists and academics due to their use in polymer composites and also their environmentally friendly nature and sustainability. The natural fiber features depend on the preparation and processing of the fibers. Natural plant fibers are extracted either by mechanical retting, dew retting and/or water retting processes. The natural fibers characteristics could be improved by suitable chemicals and surface treatments. This survey proposes a detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers. We summarize major findings from the literature and the treatment effects on the properties of the natural fibers are being highlighted
    corecore