416 research outputs found
Electronic structure theory of the hidden order material URuSi
We report a comprehensive electronic structure investigation of the
paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden
order (HO) phases of URuSi. We have performed relativistic
full-potential calculations on the basis of the density functional theory
(DFT), employing different exchange-correlation functionals to treat electron
correlations within the open -shell of uranium. Specifically, we
investigate---through a comparison between calculated and low-temperature
experimental properties---whether the electrons are localized or
delocalized in URuSi. We also performed dynamical mean field theory
calculations (LDA+DMFT) to investigate the temperature evolution of the
quasi-particle states at 100~K and above, unveiling a progressive opening of a
quasi-particle gap at the chemical potential when temperature is reduced. A
detailed comparison of calculated properties with known experimental data
demonstrates that the LSDA and GGA approaches, in which the uranium
electrons are treated as itinerant, provide an excellent explanation of the
available low-temperature experimental data of the PM and LMAF phases. We show
furthermore that due to a materials-specific Fermi surface instability a large,
but partial, Fermi surface gapping of up to 750 K occurs upon antiferromagnetic
symmetry breaking. The occurrence of the HO phase is explained through
dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic
spin-fluctuations. This dynamical symmetry breaking model explains why the
Fermi surface gapping in the HO phase is similar but smaller than that in the
LMAF phase and it also explains why the HO and LMAF phases have the same Fermi
surfaces yet different order parameters. Suitable derived order parameters for
the HO are proposed to be the Fermi surface gap or the dynamic spin-spin
correlation function.Comment: 23 pages, 20 figure
Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)
We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce).
The Mn ions present in "dilute" concentration of just 3 molar percent form a
sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm.
While the existence of (RPd3)8M (where M is a p-block element) is already
documented in the literature, the present work reports for the first time the
formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn
sub-lattice orders antiferromagnetically as inferred from the peaks in
low-field magnetization at 48 K and 23 K. The latter peak progressively shifts
towards lower temperatures in increasing magnetic field and disappears below
1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice
undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense
Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A
strongly correlated electronic ground state arising from Kondo effect is
inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0
K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also
synthesized for the first time, have a spin glass ground state due to the
random distribution of the Mn ions over the available "1b" sites in the parent
RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen
Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions
We have studied the effect of Lu substitution on the spin dynamics of the
Kondo insulator YbB12 to clarify the origin of the spin-gap response previously
observed at low temperature in this material. Inelastic neutron spectra have
been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25,
0.90 and 1.0. The data indicate that the disruption of coherence on the Yb
sublattice primarily affects the narrow peak structure occurring near 15-20 meV
in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV
remain almost unaffected. It is inferred that the latter features reflect
mainly local, single-site processes, and may be reminiscent of the inelastic
magnetic response reported for mixed-valence intermetallic compounds. On the
other hand, the lower component at 15 meV is most likely due to dynamic
short-range magnetic correlations. The crystal-field splitting in YbB12
estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the
same order of magnitude as other relevant energy scales of the system and is
thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra
details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis
label change
4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)
We have performed inelastic magnetic neutron scattering experiments on
La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low
energies. In all samples we find at high temperatures a quasielastic line
(Lorentzian) with a line width which decreases on lowering the temperature. The
temperature dependence of the quasielastic line width Gamma/2(T) can be
explained with an Orbach-process, i.e. a relaxation via the coupling between
crystal field excitations and phonons. At low temperatures the Nd-4f magnetic
response S(Q,omega) correlates with the electronic properties of the
CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line
vanishes below 80 K and an inelastic excitation occurs. This directly indicates
the splitting of the Nd3+ ground state Kramers doublet due to the static
antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with
x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18
superconductivity is strongly suppressed. In these compounds we observe a
temperature independent broad quasielastic line of Gaussian shape below T about
30 K. This suggests a distribution of various internal fields on different Nd
sites and is interpreted in the frame of the stripe model. In
La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is
not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.
Kondo effect in Ce(x)La(1-x)Cu(2.05)Si(2) intermetallics
The magnetic susceptibility and susceptibility anisotropy of the quasi-binary
alloy system Ce(x)La(1-x)Cu(2.05)Si(2) have been studied for low concentration
of Ce ions. The single-ion desc ription is found to be valid for x < 0.1. The
experimental results are discussed in terms of t he degenerate
Coqblin-Schrieffer model with a crystalline electric field splitting Delta =
330 K. The properties of the model, obtained by combining the lowest-order
scaling and the pertur bation theory, provide a satisfactory description of the
experimental data down to 30 K. The e xperimental results between 20 K and 2 K
are explained by the exact solution of the Kondo mode l for an effective
doublet.Comment: 11 pages, 13 Postscript figures, 1 tabl
Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room
Draft Genome Sequence of the Pyridinediol-Fermenting Bacterium Synergistes jonesii 78-1
Here we present the draft genome of Synergistes jonesii 78-1, ATCC 49833, a member of the Synergistes phylum. This organism was isolated from the rumen of a Hawaiian goat and ferments pyridinediols. The assembly contains 2,747,397 bp in 61 contigs
Recommended from our members
Demonstration of the Effect of Stirring on Nucleation from Experiments on the International Space Station Using the ISS-EML Facility
The effect of fluid flow on crystal nucleation in supercooled liquids is not well understood. The variable density and temperature gradients in the liquid make it difficult to study this under terrestrial gravity conditions. Nucleation experiments were therefore made in a microgravity environment using the Electromagnetic Levitation Facility on the International Space Station on a bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling temperatures for each alloy were measured as a function of controlled stirring by applying various combinations of radio-frequency positioner and heater voltages to the water-cooled copper coils. The flow patterns were simulated from the known parameters for the coil and the levitated samples. The maximum nucleation temperatures increased systematically with increased fluid flow in the liquids for Vit106, but stayed nearly unchanged for the other two. These results are consistent with the predictions from the Coupled-Flux model for nucleation
Ab-initio study of several static and dynamic properties of liquid palladium and platinum
We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data
Dynamic properties of liquid Ni revisited
Liquid Ni has previously been studied by different approaches such as molecular dynamics simulations and experimental techniques including inelastic neutron and X-ray scattering. Although some puzzling results, such as the shape of the sound dispersion curve for q ≤ 1.0 Å−1, have already been sorted out, there still persist some discrepancies, among different studies, for greater q-values. We have performed ab initio simulation calculations which show how those differences can be reconciled. Moreover, we have found that the transverse current spectral functions have some features which, so far, had previously been shown by high pressure liquid metals
- …
