49 research outputs found
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Lack of the Long Pentraxin PTX3 Promotes Autoimmune Lung Disease but not Glomerulonephritis in Murine Systemic Lupus Erythematosus
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases
Recommended from our members
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability
Recommended from our members
The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au
We present a statistical analysis of the first 300 stars observed by the
Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six
detected planets and three brown dwarfs; from these detections and our contrast
curves we infer the underlying distributions of substellar companions with
respect to their mass, semi-major axis, and host stellar mass. We uncover a
strong correlation between planet occurrence rate and host star mass, with
stars M 1.5 more likely to host planets with masses between 2-13
M and semi-major axes of 3-100 au at 99.92% confidence. We fit a
double power-law model in planet mass (m) and semi-major axis (a) for planet
populations around high-mass stars (M 1.5M) of the form , finding = -2.4 0.8 and
= -2.0 0.5, and an integrated occurrence rate of %
between 5-13 M and 10-100 au. A significantly lower occurrence rate
is obtained for brown dwarfs around all stars, with 0.8% of
stars hosting a brown dwarf companion between 13-80 M and 10-100
au. Brown dwarfs also appear to be distributed differently in mass and
semi-major axis compared to giant planets; whereas giant planets follow a
bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs
exhibit just the opposite behaviors. Comparing to studies of short-period giant
planets from the RV method, our results are consistent with a peak in
occurrence of giant planets between ~1-10 au. We discuss how these trends,
including the preference of giant planets for high-mass host stars, point to
formation of giant planets by core/pebble accretion, and formation of brown
dwarfs by gravitational instability
