1,403 research outputs found

    A Fully Differential CMOS Potentiostat

    Get PDF
    A CMOS potentiostat for chemical sensing in a noisy environment is presented. The potentiostat measures bidirectional electrochemical redox currents proportional to the concentration of a chemical down to pico-ampere range. The fully differential architecture with differential recording electrodes suppresses the common mode interference. A 200μm×200μm prototype was fabricated in a standard 0.35μm standard CMOS technology and yields a 70dB dynamic range. The in-channel analog-to-digital converter (ADC) performs 16-bit current-tofrequency quantization. The integrated potentiostat functionality is validated in electrical and electrochemical experiments

    Canning of non exportable shrimps

    Get PDF
    The shrimp can with three compounds of salted water, oil, and sauce, in view of the organoleptic characteristics were compared to each other. Also the effects of processing methods including freezing, drying and canning were evaluated according to some qualitative parameters to raw shrimp (blank). The result showed that considering the organoleptic characteristics, the shrimp can with the compound of oil was better than the two others. On the other hand, the pH of the shrimp can, containing oil was 7.44 ± 0.01, freeze shrimp 7 ± 83-0.04 and dried shrimp 7.46 ± 0.01, that according to the T test, comparing to the blank these differences were statistically meaningful (P <U/01). The amount of protein in freeze shrimp was 96.2 ± 0.03, in dried shrimp 81 ± 0.7 and in canned shrimp (containing oil) was 76.8 ± 0.92, these differences were also statistically considerable. The quantity of the T.V.N in freeze shrimp was 0 ± 0.53, dried shrimp 66 ± 0.3 and in canned shrimp (containing oil) was significant. In view of the total number of the microorganisms, in freeze shrimp was 4800 per gram, in the dried shrimp 15500 per gram, and in the canned shrimp was negative

    Bio-based Renewable Additives for Anti-icing Applications (Phase I)

    Get PDF
    The performance and impacts of several bio-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. A statistical design of experiments (uniform design) was employed for developing anti-icing liquids consisting of cost-competitive chemicals such as bio-based compounds (e.g., sugar beet extract and dandelion extract), rock salt, sodium metasilicate, and sodium formate. The following experimentally obtained parameters were examined as a function of the formulation design: ice-melting capacity and ice penetration at 25°F (−3.9°C) and 15°F (−9.4°C), compressive strength of Portland cement mortar samples after 10 freezethaw/deicer cycles, corrosion rate of C1010 carbon steel after 24-hour immersion, and impact on asphalt binder’s stiffness. One viable formula (“best performer”) was tested for freezing point depression phase diagram (ASTM D1177-88) and the friction coefficient of asphalt pavement treated by this anti-icing formulation (vs. 23 wt.% NaCl) at a certain temperature near 25°F or 30°F after being applied at 30 gallons per lane mile (1 hour after simulated trafficking and plowing). Laboratory data shed light on the selection and formulation of innovative bio-based snow and ice control chemicals that can significantly reduce the costs of winter maintenance operations. This exploratory investigation contributes to more systematic study of optimizing “greener” anti-icers using renewable resources

    Experimental Investigation of Interfacial Tension Measurement and Oil Recovery by Carbonated Water Injection : A Case Study Using Core Samples from an Iranian Carbonate Oil Reservoir

    Get PDF
    The authors would like to gratefully acknowledge and appreciate the Department of Petroleum Engineering, Faculty of Engineering, Marvdasht Islamic Azad University, Marvdasht, 73711-13119, Iran, for the provision of the laboratory facilities necessary for completing this work.Peer reviewedPostprin

    Bio-Based Renewable Additives for Anti-Icing Applications (Phase II)

    Get PDF
    The performance and impacts of several agro-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. A statistical design of experiments (central composite design) was employed for developing anti-icing liquids consisting of cost-competitive chemicals such as agro-based compounds (e.g., Concord grape extract and glycerin), sodium chloride, sodium metasilicate, and sodium formate. The following experimentally obtained parameters were examined as a function of the formulation design: ice-melting capacity at 25°F (−3.9°C), splitting strength of Portland cement mortar samples after 10 freeze-thaw/deicer cycles, corrosion rate of C1010 carbon steel after 24-hour immersion, and impact on asphalt binder stiffness and m-value. One viable formula (“best performer”) was tested for thermal properties by measuring its differential scanning calorimetry (DSC) thermograms, the friction coefficient of asphalt pavement treated by this anti-icing formulation (vs. 23 wt.% NaCl and beet juice blend) at 25°F after being applied at 30 gallons per lane mile (1 hour after simulated trafficking and plowing), and other properties (pH, oxygen demand in COD). Laboratory data shed light on the selection and formulation of innovative agro-based snow- and ice-control chemicals that can significantly reduce the costs of winter maintenance operations
    corecore