290 research outputs found
Adaptation to climate change: a comparative analysis of modelling methods for heat-related mortality
Background: Multiple methods are employed for modelling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known on the relative sensitivity of impacts to “adaptation uncertainty” (i.e. the inclusion/exclusion of adaptation modelling), relative to using multiple climate models and emissions scenarios.
Objectives: (1) Compare the range in projected impacts that arises from using different adaptation modelling methods; (2) compare the range in impacts that arises from adaptation uncertainty to ranges from using multiple climate models and emissions scenarios; (3) recommend modelling method(s) to use in future impact assessments.
Methods: We estimated impacts for 2070-2099, for 14 European cities, applying six different methods for modelling adaptation; also with climate projections from five climate models, run under two emissions scenarios to explore the relative effects of climate modelling and emissions uncertainty.
Results: The range of the difference (%) in impacts between including and excluding adaptation, irrespective of climate modelling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modelling and emissions uncertainty.
Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modelling. We recommend absolute threshold shifts and reductions in slope
Perspectives on synoptic climate classification and its role in interdisciplinary research
Synoptic climatology has a long history of research where weather data are aggregated and composited to gain a better understanding of atmospheric effects on non-atmospheric variables. This has resulted in an applied scientific discipline that yields methods and tools designed for applications across disciplinary boundaries. The spatial synoptic classification (SSC) is an example of such a tool that helps researcher bridge methodological gaps between disciplines, especially those studying weather effects on human health. The SSC has been applied in several multi-discipline projects, and it appears that there is ample opportunity for growth into new topical areas. Likewise, there is opportunity for the SSC network to be expanded across the globe, especially into mid-latitude locations in the southern hemisphere. There is some question of the utility of the SSC in tropical locations, but such decisions must be based on the actual weather data from individual locations. Despite all of the strengths and potential uses of the SSC, there are some research problems, some locations, and some datasets for which it is not suitable. Nevertheless, the success of the SSC as a cross-disciplinary method is noteworthy because it has become a catalyst for collaboration
Committing to ecological restoration: Efforts around the globe need legal and policy clarification
At the September 2014 United Nations Climate Summit, governments rallied around an international agreement—the New York Declaration on Forests—that underscored restoration of degraded ecosystems as an auspicious solution to climate change. Ethiopia committed to restore more than one-sixth of its land. Uganda, the Democratic Republic of Congo, Guatemala, and Colombia pledged to restore huge areas within their borders. In total, parties committed to restore a staggering 350 million hectares by 2030.Fil: Suding, Kathering. State University Of Colorado-boulder; Estados UnidosFil: Higgs, Eric. University Of Victoria; CanadáFil: Palmer, Margaret. University of Maryland; Estados UnidosFil: Callicott, J. Baird. University Of North Texas; Estados UnidosFil: Anderson, Christopher Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Baker, Matthew. University Of Maryland; Estados UnidosFil: Gutrich, John J.. Southern Oregon University; Estados UnidosFil: Hondula, Kelly L.. University of Maryland; Estados UnidosFil: Lafevor, Matthew C.. University of Maryland; Estados UnidosFil: Larson, Brendon M. H.. University Of Waterloo; CanadáFil: Randall, Alan. Ohio State University; Estados Unidos. University Of Sidney; AustraliaFil: Ruhl, J. B.. Vanderbilt University; Estados UnidosFil: Schwartz, Katrina Z. S.. Woodrow Wilson International Center for Scholars; Estados Unido
Effects of spoilage on nitrogen and carbon stable isotopes signatures of the clam Ruditapes decussatus
Fish and seafood products are highly susceptible to post-mortem
spoilage due to autolytic reactions at start, then microbiological activity and
eventually oxidative reactions. Chemical and microbiological parameters are
usually used to assess quality and make decisions for protecting public health,
but they lack precision in defining which spoilage pathway is occurring at each
moment. The objective of this work was to assess the effects of spoilage reactions
on nitrogen and carbon stable isotopes in the grooved carpet shell clam,
Ruditapes decussatus, and compare them to biochemical indicators of seafood
deterioration, in order to better understand the relations between the different
spoilage pathways during commercial storage conditions. Clams were kept in a
refrigerator at 5 ºC, to simulate normal commercial storage conditions, and
sampled in the beginning of the experiment, and after eight, ten and twelve
days. Moisture, condition index, percentage edibility, total volatile basic nitrogen
(TVB-N), pH, nitrogen and carbon percentages and stable isotopes were determined
for each sampling moment. Stable isotope analyses were performed
using a Costech Elemental Analyzer (ECS 4010) coupled to a ThermoFinnigan
Delta V Advantage. Stable isotopes analysis, especially for nitrogen, proved to
be a good tool for the study of clam deterioration. Nitrogen stable isotopes results
showed a relation with other spoilage indicators, such as pH and TVB-N,
and allowed identifying spoilage specific pathways, such as amino acids decarboxylation
and production of volatile nitrogen compounds.info:eu-repo/semantics/publishedVersio
QUANTIFYING EFFECTS OF SEASONAL INUNDATION ON METHANE FLUXES FROM FORESTED FRESHWATER WETLANDS
Developing effective strategies for reducing methane and other greenhouse gas emissions requires a quantitative understanding of their global sources and sinks. Decomposition of organic matter in wet soils is one of the largest sources of methane to the atmosphere, but it is a highly variable process that remains difficult to quantify because we lack a predictive understanding of how environmental factors control methane emissions in wetlands. Hydrology is one of the most important factors controlling methane production wetlands along with temperature and vegetation, however it is unclear how to relate aspects of a wetland’s hydrologic regime to the timing, magnitude, and spatial extent of its methane emissions. Furthermore, discrepancies between the magnitude of global methane emissions calculated using different techniques indicate that current methods for measuring the extent and dynamics of wetland areas in global models may not adequately represent processes controlling methane cycling in wetlands and other small water bodies.
I studied the role of seasonal hydrologic variability on methane emissions from forested mineral soil wetlands to inform modeling techniques at different scales. In Chapter 1, I show the importance of inundation extent and duration as major drivers of wetland methane emissions, that methane fluxes have a non-linear relationship with water level, and that methane fluxes are higher when water levels are falling rather than rising. In Chapter 2, I demonstrate a new technique for calculating methane emissions using high resolution satellite data to quantify wetland inundation time series, and some limits of current technology for modeling surface water dynamics in forested wetlands. Chapter 3 presents and applies a modeling framework for quantifying hydrologic fluxes of methane in the context of common forms of wetland restoration
In combination, these studies establish how and why quantifying the hydrologic regime of seasonally inundated forested wetlands enables a more accurate estimation of methane emissions at multiple scales, that water level drawdown associated with the natural hydrologic regime of forested wetlands considerably reduces methane producing areas, and that improved methods for detecting and modeling surface water dynamics in low relief landscapes will improve our ability to quantify methane emissions
Empedocle e la bonifica di Selinunte: un breve riesame
Alcune considerazioni intorno a un passo di Diogene Laerzio, secondo il quale il filosofo Empedocle avrebbe attuato un'operazione di bonifica a Selinunte, e sulla possibilit\ue0 di trovare riscontri in proposito
WHITE PAPER: AN OVERVIEW OF CONCEPTUAL FRAMEWORKS, ANALYTICAL APPROACHES AND RESEARCH QUESTIONS IN THE FOOD-ENERGY-WATER NEXUS
The food-energy-water (FEW) nexus is increasingly emphasized and prioritized as a framework for research, technology, and policy to deal with complex socio-environmental problems. Producing food in sufficient quantity and of sufficient quality, ensuring enough but not too much water, and generating energy, all to meet human needs and desires, requires an understanding of how those goals complement or counteract one another in specific places and through specific processes. FEW nexus research focuses on understanding the interconnections among each system, in order to provide a more complete picture about the causes and consequences of changes within and across aspects of those systems. This paper synthesizes the current state of thinking and research in FEW nexus field. We first overview the systems underpinnings of the FEW nexus as a conceptual framework, and identify the assumptions, similarities and contrasts among the most cited models from current literature. Several analytical approaches – coupled systems, ecosystem services, flows and risk analysis – are emerging as key tools for conducting interdisciplinary FEW nexus research, and we identify their conceptual connections to systems thinking broadly as well as the specific assumptions that each make about the relationships among systems. Finally, based on expert consultations and assessment of current data availability, we highlight several topical areas of contemporary relevance for FEW nexus research at various scales. Characterizing the conceptual, analytical and empirical similarities and distinctions among approaches to FEW nexus research with a starting point for identifying innovative research questions and approaches.This work was supported by the National Socio-Environmental Synthesis Center (SESYNC), which is funded by National Science Foundation Grant # DBI-1052875
Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence from a Hot Climate
Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.
Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA with a focus on the summer season.
Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature-health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.
Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures and there were several times more of those events than deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.
Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identify threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve public health response to a problem projected to worsen in the coming decades
Variability in contamination of submarine groundwater discharge into West Hawai‘i coral reefs
Sewage pollution is a global threat to coastal ecosystems and amplifies the negative effects of climate change on coral reefs. Submarine groundwater discharge (SGD) is a major transport pathway for land-based pollution, but underlying drivers of SGD water quality are poorly understood, especially in nearshore coral reef ecosystems. We combined airborne mapping, field sampling, and statistical modeling to identify locations along the West Hawai‘i Island coastline where SGD is contaminated with sewage. Water samples collected from 47 distributed shoreline SGD locations were assayed for fecal indicator bacteria. A geostatistical model was used scale from field to regional levels at more than 1000 mapped SGD point locations to derive a geographic understanding of areas highly susceptible to contamination. We estimate that SGD delivers sewage-contaminated groundwater to at least 42% of reefs in West Hawaiʻi. Subsequent analyses indicate that contaminated points are associated with infrastructural build-up near the shoreline and an abundance of inland on-site sewage disposal systems. Mitigation of sewage pollution will require the prevention of numerous point sources from cesspools, septic leach fields, and similar sources
- …
