358 research outputs found
Doped planar quantum antiferromagnets with striped phases
We study the properties of the striped phases that have been proposed for the
doped cuprate planar quantum antiferromagnets. We invoke an effective,
spatially anisotropic, non-linear sigma model in two space dimensions. Our
theoretical predictions are in {\it quantitative} agreement with recent
experiments. We focus on (i) the staggered magnetization at and (ii) the
N\'eel temperature, as functions of doping; these have been measured recently
in La Sr Cu O with . Good agreement
with experiment is obtained using parameters determined previously and
independently for this system. These results support the proposal that the low
doping (antiferromagnetic) phase of the cuprates has a striped configuration.Comment: 4 pages, RevteX, 2 figures, new references added, minor changes in
wording and corrections of some formula
Zener Transitions Between Dissipative Bloch Bands
Within a two-band tight binding model, we investigate the dynamics of
electrons with Markoffian dephasing under the influence of static electric
fields. With the help of both numerical and analytic calculations we find that
the dephasing ultimately takes electrons which are initially located in one
miniband to equal population of the two minibands, instead of undergoing
persistent Rabi flop, as they do in the absence of scattering. Miniband
localization is wholly destroyed by the intervention of dephasing. We also
obtain the effective decay time for the approach to equal band populations
under conditions of small interband communication and in the long-time limit,
through a perturbative calculation. The decay rate shows characteristic sharp
peaks at values of the parameters which give Zener resonances.Comment: 8 pages, 5 Postscript figure
Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies
The statistical mechanics of periodically driven ("Floquet") systems in
contact with a heat bath exhibits some radical differences from the traditional
statistical mechanics of undriven systems. In Floquet systems all quasienergies
can be placed in a finite frequency interval, and the number of near
degeneracies in this interval grows without limit as the dimension N of the
Hilbert space increases. This leads to pathologies, including drastic changes
in the Floquet states, as N increases. In earlier work these difficulties were
put aside by fixing N, while taking the coupling to the bath to be smaller than
any quasienergy difference. This led to a simple explicit theory for the
reduced density matrix, but with some major differences from the usual time
independent statistical mechanics. We show that, for weak but finite coupling
between system and heat bath, the accuracy of a calculation within the
truncated Hilbert space spanned by the N lowest energy eigenstates of the
undriven system is limited, as N increases indefinitely, only by the usual
neglect of bath memory effects within the Born and Markov approximations. As we
seek higher accuracy by increasing N, we inevitably encounter quasienergy
differences smaller than the system-bath coupling. We therefore derive the
steady state reduced density matrix without restriction on the size of
quasienergy splittings. In general, it is no longer diagonal in the Floquet
states. We analyze, in particular, the behavior near a weakly avoided crossing,
where quasienergy near degeneracies routinely appear. The explicit form of our
results for the denisty matrix gives a consistent prescription for the
statistical mechanics for many periodically driven systems with N infinite, in
spite of the Floquet state pathologies.Comment: 31 pages, 3 figure
Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature
We extend, to include the effects of finite temperature, our earlier study of
the interband dynamics of electrons with Markoffian dephasing under the
influence of uniform static electric fields. We use a simple two-band
tight-binding model and study the electric current response as a function of
field strength and the model parameters. In addition to the Esaki-Tsu peak,
near where the Bloch frequency equals the damping rate, we find current peaks
near the Zener resonances, at equally spaced values of the inverse electric
field. These become more prominenent and numerous with increasing bandwidth (in
units of the temperature, with other parameters fixed). As expected, they
broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure
Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide
Recent progress in large-area synthesis of monolayer molybdenum disulfide, a
new two-dimensional direct-bandgap semiconductor, is paving the way for
applications in atomically thin electronics. Little is known, however, about
the microstructure of this material. Here we have refined chemical vapor
deposition synthesis to grow highly crystalline islands of monolayer molybdenum
disulfide up to 120 um in size with optical and electrical properties
comparable or superior to exfoliated samples. Using transmission electron
microscopy, we correlate lattice orientation, edge morphology, and
crystallinity with island shape to demonstrate that triangular islands are
single crystals. The crystals merge to form faceted tilt and mirror boundaries
that are stitched together by lines of 8- and 4- membered rings. Density
functional theory reveals localized mid-gap states arising from these 8-4
defects. We find that mirror boundaries cause strong photoluminescence
quenching while tilt boundaries cause strong enhancement. In contrast, the
boundaries only slightly increase the measured in-plane electrical
conductivity
Ac Stark Effects and Harmonic Generation in Periodic Potentials
The ac Stark effect can shift initially nonresonant minibands in
semiconductor superlattices into multiphoton resonances. This effect can result
in strongly enhanced generation of a particular desired harmonic of the driving
laser frequency, at isolated values of the amplitude.Comment: RevTeX, 10 pages (4 figures available on request), Preprint
UCSBTH-93-2
- …
