30,602 research outputs found

    On the inward drift of runaway electrons during the plateau phase of runaway current

    Full text link
    The well observed inward drift of current carrying runaway electrons during runaway plateau regime after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by taking the variation of canonical angular momentum. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau regime.Comment: 25 pages, 9 figures, submitted to Physics of Plasma

    Protocol for electrophysiological monitoring of carotid endarterectomies.

    Get PDF
    Near zero stroke rates can be achieved in carotid endarterectomy (CEA) surgery with selective shunting and electrophysiological neuromonitoring. though false negative rates as high as 40% have been reported. We sought to determine if improved training for interpretation of the monitoring signals can advance the efficacy of selective shunting with electrophysiological monitoring across multiple centers, and determine if other factors could contribute to the differences in reports. Processed and raw beta band (12.5-30 Hz) electroencephalogram (EEG) and median and tibial nerve somatosensory evoked potentials (SSEP) were monitored in 668 CEA cases at six surgical centers. A decrease in amplitude of 50% or more in any EEG or SSEP channel was the criteria for shunting or initiating a neuroprotective protocol. A reduction of 50% or greater in the beta band of the EEG or amplitude of the SSEP was observed in 150 cases. No patient showed signs of a cerebral infarct after surgery. Selective shunting based on EEG and SSEP monitoring can reduce CEA intraoperative stroke rate to a near zero level if trained personnel adopted standardized protocols. We also found that the rapid administration of a protective stroke protocol by attending anesthesiologists was an important aspect of this success rate

    c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells.

    Get PDF
    ObjectiveADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis.DesignPromoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences.ResultsIn vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61.ConclusionsThese data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter

    Optical Monitoring of the Seyfert Galaxy NGC 4151 and Possible Periodicities in the Historical Light Curve

    Full text link
    We report B, V, and R band CCD photometry of the Seyfert galaxy NGC 4151 obtained with the 1.0-m telescope at Weihai Observatory of Shandong University and the 1.56-m telescope at Shanghai Astronomical Observatory from 2005 December to 2013 February. Combining all available data from literature, we have constructed a historical light curve from 1910 to 2013 to study the periodicity of the source using three different methods (the Jurkevich method, the Lomb-Scargle periodogram method and the Discrete Correlation Function method). We find possible periods of P_1=4\pm0.1, P_2=7.5\pm0.3 and P_3=15.9\pm0.3 yr.Comment: 8 pages, 5 figures, Accepted by Research in Astronomy and Astrophysic

    Study on space-time structure of Higgs boson decay using HBT correlation Method in e+^+e^- collision at s\sqrt{s}=250 GeV

    Full text link
    The space-time structure of the Higgs boson decay are carefully studied with the HBT correlation method using e+^+e^- collision events produced through Monte Carlo generator PYTHIA 8.2 at s\sqrt{s}=250GeV. The Higgs boson jets (Higgs-jets) are identified by H-tag tracing. The measurement of the Higgs boson radius and decay lifetime are derived from HBT correlation of its decay final state pions inside Higgs-jets in the e+^+e^- collisions events with an upper bound of RH1.03±0.05R_H \le 1.03\pm 0.05 fm and τH(1.29±0.15)×107\tau_H \le (1.29\pm0.15)\times 10^{-7} fs. This result is consistent with CMS data.Comment: 7 pages,3 figure
    corecore