1,467 research outputs found

    Piecewise companding transform assisted optical-OFDM systems for indoor visible light communications

    No full text
    In visible light communications (VLCs) relying on intensity-modulation and direct detection (IM/DD), the conversion from electrical signals to optical signals and the limited dynamic range of the light-emitting diodes (LEDs) constitute the fundamental impediments in the way of high-integrity communications, especially when orthogonal frequency-division multiplexing (OFDM) is employed. In IM/DD VLCs, only real-valued positive signals are used for signal transmission. However, the Fourier transform of OFDM systems is operated in the complex domain. In order to meet the requirements of the IM/DD VLCs, the complex-to-real conversion is achieved at the cost of reducing the bandwidth efficiency. Moreover, OFDM signals experience a high peak-to-average power ratio; hence, typically clipping is used for confining the positive-valued signals within the LED's dynamic range. However, hard clipping leads to the loss of orthogonality for optical OFDM (O-OFDM) signals, generating inter-carrier interference. As a result, the performance of the clipping-based O-OFDM systems may be severely degraded. In this paper, the concept of piecewise companding transform (CT) is introduced into the O-OFDM system advocated, forming the CTO-OFDM arrangement. We first investigate the general principles and design criteria of the piecewise CTO-OFDM. Based on our studies, three types of piecewise companders, namely, the constant probability sub-distribution function, linear PsDF (LPsDF), and the non-LPsDF-based CT, are designed. Furthermore, we investigate the nonlinear effect of hard clipping and of our CT on O-OFDM systems in the context of different scenarios by both analytical and simulation techniques. Our investigations show that the CTO-OFDM constitutes a promising signaling scheme conceived for VLCs, which exhibits a high bandwidth efficiency, high flexibility, high reliability, as well as a high data-rate, despite experiencing nonlinear distortions

    Performance analysis of orthogonal frequency division multiplexing systems in dispersive indoor power line channels inflicting asynchronous impulsive noise

    No full text
    Hidden semi-Markov modelling of the asynchronous impulsive noise (IN) encountered in indoor broadband power line communications (PLCs) is investigated by considering the statistical distributions of both the inter-arrival time and the duration of asynchronous IN components. Then, the bit error ratio (BER) of orthogonal frequency division multiplexing systems using Q-ary quadrature amplitude modulation is analysed with the aid of the proposed noise model, when communicating over dispersive indoor power line channels inflicting asynchronous IN in addition to the background noise. The authors’ simulation results confirm the accuracy of the analysis and quantify the impact of various factors on the achievable BER performance. The grave impact of asynchronous IN on indoor broadband PLCs suggests that efficient techniques have to be designed for mitigating its effect

    Representation Learning for Attributed Multiplex Heterogeneous Network

    Full text link
    Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types, and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better expressiveness. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading e-commerce company, Alibaba Group. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.Comment: Accepted to KDD 2019. Website: https://sites.google.com/view/gatn

    Compressed sensing improves the performance of subcarrier index-modulation assisted OFDM

    No full text
    In orthogonal frequency division multiplexing relying on subcarrier index modulation (OFDM-SIM), the information is conveyed by both the indices of the activated subcarriers and the conventional amplitude-phase modulated (APM) symbols. It has been shown that OFDM-SIM is capable of striking a tradeoff between the attainable spectral efficiency (SE) and energy efficiency (EE). In order to further increase the EE of the OFDM-SIM system, while potentially increasing its SE, we propose a compressed sensing (CS) assisted signalling strategy for the family of OFDM-SIM systems. Correspondingly, we first consider the joint maximum likelihood (JML) detection of the CS assisted index-modulated (CSIM) and of the classic APM symbols, despite its high complexity. Then, we propose a low complexity detection algorithm, which is termed as the iterative residual check (IRC) based detector. This is based on the Greedy Pursuit concept of CS, which makes locally optimal choices at each step. Finally, both analytical and simulation results are provided for characterizing the attainable system performance of our proposed OFDM-CSIM system. We demonstrate that in comparison to the conventional OFDM-SIM system, the proposed OFDM-CSIM arrangement is capable of achieving both a higher SE as well as an increased EE. We also show that the diversity gain provided by the OFDM-CSIM system is much higher than that of the OFDM-SIM system. Furthermore, our investigation of the detection performance shows that the proposed IRC detector is capable of providing an attractive detection performance at a low complexity

    Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs

    Full text link
    Weyl semi-metal is the three dimensional analog of graphene. According to the quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the first experimental evidence for the long-anticipated negative magneto-resistance generated by the chiral anomaly in a newly predicted time-reversal invariant Weyl semi-metal material TaAs. Clear Shubnikov de Haas oscillations (SdH) have been detected starting from very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits to be {\pi}, indicating the existence of Weyl points.Comment: Submitted in February'1

    Spin-orbit interaction in Au structures of various dimensionalities

    Get PDF
    Variation of the geometrical and electronic properties of the gold materials in different dimensions has been investigated by abab initioinitio method, taking into account the spin-orbit (SO) interaction. It is found that SO effects in different dimensional Au materials depend greatly on fundamental symmetry and dimensionality. For single walled gold nanotubes (SWGNTs), SO interaction decreases significantly the conducting channel number of achiral SWGNT (4, 0), and leads to spin splitting at Fermi level of chiral SWGNT, indicating that quasi-1D SWGNT can be a good candidate for the spin-electron devices. Furthermore, our results suggest that cage cluster might be synthesizable experimentally by taking gold tube structure as parent material.Comment: 11 pages, 4 figure

    Evidence for Half-Metallicity in n-type HgCr2Se4

    Full text link
    High quality HgCr2_2Se4_4 single crystals have been investigated by magnetization, electron transport and Andreev reflection spectroscopy. In the ferromagnetic ground state, the saturation magnetic moment of each unit cell corresponds to an integer number of electron spins (3 μB\mu_B/Cr3+^{3+}), and the Hall effect measurements suggest n-type charge carriers. Spin polarizations as high as 97%97\% were obtained from fits of the differential conductance spectra of HgCr2_2Se4_4/Pb junctions with the modified Blonder-Tinkham-Klapwijk (BTK) theory. The temperature and bias-voltage dependencies of the sub-gap conductance are consistent with recent theoretical calculations based on spin active scatterings at a superconductor/half metal interface. Our results suggest that n-HgCr2_2Se4_4 is a half metal, in agreement with theoretical calculations that also predict undoped HgCr2_2Se4_4 is a magnetic Weyl semimetal.Comment: 6 pages, 4 figures, to appear in PR
    corecore