572 research outputs found
Decentralized Douglas-Rachford splitting methods for smooth optimization over compact submanifolds
We study decentralized smooth optimization problems over compact
submanifolds. Recasting it as a composite optimization problem, we propose a
decentralized Douglas-Rachford splitting algorithm, DDRS. When the proximal
operator of the local loss function does not have a closed-form solution, an
inexact version of DDRS, iDDRS, is also presented. Both algorithms rely on an
ingenious integration of the nonconvex Douglas-Rachford splitting algorithm
with gradient tracking and manifold optimization. We show that our DDRS and
iDDRS achieve the best-known convergence rate of . The main
challenge in the proof is how to handle the nonconvexity of the manifold
constraint. To address this issue, we utilize the concept of proximal
smoothness for compact submanifolds. This ensures that the projection onto the
submanifold exhibits convexity-like properties, which allows us to control the
consensus error across agents. Numerical experiments on the principal component
analysis are conducted to demonstrate the effectiveness of our decentralized
DRS compared with the state-of-the-art ones
Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, Property, and Fiber
Poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] are produced by various microorganisms as an intracellular carbon and energy reserve from agricultural feedstocks such as sugars and plant oils under unbalanced growth conditions. P(3HB) and P(3HB-co-3HV) have attracted the attention of academia and industry because of its biodegradability, biocompatibility, thermoplasticity, and plastic-like properties. This review first introduced the isodimorphism, spherulites, and molecular interaction of P(3HB) and P(3HB-co-3HV). In addition, the effects of 3HV content on the melting temperature and crystallization rate were discussed. Then the drawbacks of P(3HB) and P(3HB-co-3HV) including brittleness, narrow melt processing window, low crystallization rate, slow biodegradation rate in body, and so on were summarized. At last, the preparation, structure, and properties of P(3HB) and P(3HB-co-3HV) fiber were introduced
Linezolid decreases Staphylococcus aureus biofilm formation by affecting the IcaA and IcaB proteins
Background: The ica gene of Staphylococcus aureus (S. aureus) plays a vital role in its growth and biofilm formation. Among them, IcaA and IcaB are critical proteins for synthesizing extracellular polysaccharides and biofilms in S. aureus. To investigate whether the formation of S. aureus biofilms can be inhibited through the IcaA and IcaB proteins by the presence of linezolid. Methods: The icaA and icaB genes of S. aureus ATCC 25923 were silenced by homologous recombination. The critical roles of icaA and icaB in S. aureus were analysed by observing the growth curve and biofilm formation after linezolid treatment. Then, the effect of linezolid on the morphology of S. aureus was observed by scanning electron microscopy. Finally, the potential binding ability of linezolid to Ica proteins was predicted by molecular docking. Results: The icaA- and icaB-silenced strains were successfully constructed, and the sensitivity of S. aureus to linezolid was decreased after icaA and icaB silencing. Scanning electron microscopy showed that linezolid caused invagination of the S. aureus surface and reduced the production of biofilms. Molecular docking results showed that linezolid could bind to IcaA and IcaB proteins. Conclusion: IcaA and IcaB are potential targets of linezolid in inhibiting the biofilm formation of S. aureus (ATCC 25923)
Systematic study of pentaquark states: configuration
Group theoretic method for the systematic study of five-quark states with
meson-baryon () configuration is developed. The calculation of
matrix elements of many body Hamiltonian is simplified by transforming the
physical bases (meson-baryon quark cluster bases) to symmetry bases (group
chain classified bases), where the fractional parentage expansion method can be
used. Three quark models, the naive Glashow-Isgur model, Salamanca chiral quark
model and quark delocalization color screening model, are used to show the
general applicability of the method and general results of constituent quark
models for five-quark states are given. The method can also be useful in the
calculation of meson-baryon scattering and the study of the five-quark
components effect in baryon structure. The physical contents of different model
configurations for the same multi-quark system can also be compared through the
transformation between different physical bases to the same set of symmetry
bases.Comment: 30 pages, 8 figure
Multimodal analysis of saddle micro-terrain prone to wind disasters on overhead transmission lines
Pervasive micro-terrain is a significant contributor to wind disasters on transmission lines. This study explores the effect of saddle micro-terrain on the wind field of transmission lines and proposes relevant models and analysis methods. Firstly, the characteristic elements and parameters of saddle micro-terrain are extracted using DEM and established representative cross-sections for classification. Subsequently, a multimodal computational model is developed, considering the geographical and meteorological features and the sag model of transmission lines under micro-terrain. This study calculates wind field distribution and conductor wind loads for three types of saddle micro-terrain conditions, revealing an exponential growth trend of wind loads with increasing wind speeds. The results indicate that in transmission lines at saddle areas, the sag region does not intrude into the boundary layer, with a wind speed growth rate of only 0.18, resulting in relatively stable wind loads. In contrast, for transmission lines at saddle areas in secondary mountain ranges and dual-mountain saddle regions, wind speed growth rates reach 0.97 and 1.53, respectively, indicating higher disaster risks. This research provides a basis for distinguishing and disaster prevention in mountainous transmission lines' micro-terrain variations, offering significant contributions to enhancing wind-resistant design standards in mountainous regions
Liposomal mitoxantrone-based multidrug chemotherapy as a bridge to allogeneic hematopoietic stem cell transplantation in relapsed/refractory acute lymphoblastic leukemia (ALL) after immunotherapy failure: a case report
Acute lymphoblastic leukemia (ALL) represents a malignancy involving early-stage differentiated lymphoid cells that invade the bone marrow, blood, and extramedullary sites. First-line treatment spans 2–3 years with induction, consolidation, intensification, and long-term maintenance phases. Relapsed/refractory (R/R) ALL typically carries an adverse prognosis, and there is currently no standard of care for this disease. Here, we present a case of R/R ALL that responded effectively to liposomal mitoxantrone-based multidrug chemotherapy, resulting in a rapid complete response after 35 days of therapy. Subsequently, the patient was successfully treated with allo-HSCT. At 5 months follow-up, the patient was alive and leukemia-free. Additionally, no severe adverse events were recorded during liposomal mitoxantrone treatment or hospitalization for allo-HSCT. Given the encouraging efficacy and the manageable adverse events observed in our case, liposomal mitoxantrone-based multidrug chemotherapy should be further explored as a bridge to allo-HSCT in patients with R/R ALL
The influence of embryo stage on obstetric complications and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: a systematic review and meta-analysis
ObjectiveTo investigate the effect of embryo stage at the time of transfer on obstetric and perinatal outcomes in programmed frozen-thawed embryo transfer (FET) versus natural FET cycles.DesignSystematic review and meta-analysis.SettingNot applicable.Patient(s)Women with programmed frozen-thawed embryo transfer (FET) and natural FET.Intervention(s)The PubMed, MEDLINE, and EMBASE databases and the Cochrane Central Register of Controlled Trials (CCRT) were searched from 1983 to October 2022. Twenty-three observational studies were included.Primary outcome measureThe primary outcomes were hypertensive disorders of pregnancy (HDPs), gestational hypertension and preeclampsia (PE). The secondary outcomes were gestational diabetes mellitus (GDM), placenta previa, postpartum haemorrhage (PPH), placental abruption, preterm premature rupture of membranes (PPROM), large for gestational age (LGA), small for gestational age (SGA), macrosomia, and preterm delivery (PTD).Result(s)The risk of HDP (14 studies, odds ratio (OR) 2.17; 95% confidence interval (CI) 1.95-2.41; P<0.00001; I2 = 43%), gestational hypertension (11 studies, OR 1.38; 95% CI 1.15-1.66; P=0.0006; I2 = 19%), PE (12 studies, OR 2.09; 95% CI 1.88-2.32; P<0.00001; I2 = 0%), GDM (20 studies, OR 1.09; 95% CI 1.02-1.17; P=0.02; I2 = 8%), LGA (18 studies, OR 1.11; 95% CI 1.07-1.15; P<0.00001; I2 = 46%), macrosomia (12 studies, OR 1.15; 95% CI 1.07-1.24; P=0.0002; I2 = 31%), PTD (22 studies, OR 1.21; 95% CI 1.15-1.27; P<0.00001; I2 = 49%), placenta previa (17 studies, OR 1.2; 95% CI 1.02-1.41; P=0.03; I2 = 11%), PPROM (9 studies, OR 1.19; 95% CI 1.02-1.39; P=0.02; I2 = 40%), and PPH (12 studies, OR 2.27; 95% CI 2.02-2.55; P <0.00001; I2 = 55%) were increased in programmed FET cycles versus natural FET cycles with overall embryo transfer. Blastocyst transfer had a higher risk of HDP (6 studies, OR 2.48; 95% CI 2.12-2.91; P<0.00001; I2 = 39%), gestational hypertension (5 studies, OR 1.87; 95% CI 1.27-2.75; P=0.002; I2 = 25%), PE (6 studies, OR 2.23; 95% CI 1.93-2.56; P<0.00001; I2 = 0%), GDM (10 studies, OR 1.13; 95% CI 1.04-1.23; P=0.005; I2 = 39%), LGA (6 studies, OR 1.14; 95% CI 1.07-1.21; P<0.0001; I2 = 9%), macrosomia (4 studies, OR 1.15; 95% CI 1.05-1.26; P<0.002; I2 = 68%), PTD (9 studies, OR 1.43; 95% CI 1.31-1.57; P<0.00001; I2 = 22%), PPH (6 studies, OR 1.92; 95% CI 1.46-2.51; P<0.00001; I2 = 55%), and PPROM (4 studies, OR 1.45; 95% CI 1.14-1.83; P=0.002; I2 = 46%) in programmed FET cycles than in natural FET cycles. Cleavage-stage embryo transfers revealed no difference in HDPs (1 study, OR 0.81; 95% CI 0.32-2.02; P=0.65; I2 not applicable), gestational hypertension (2 studies, OR 0.85; 95% CI 0.48-1.51; P=0.59; I2 = 0%), PE (1 study, OR 1.19; 95% CI 0.58-2.42; P=0.64; I2not applicable), GDM (3 study, OR 0.79; 95% CI 0.52-1.20; P=0.27; I2 = 21%), LGA (1 study, OR 1.15; 95% CI 0.62-2.11; P=0.66; I2not applicable), macrosomia (1 study, OR 1.22; 95% CI 0.54-2.77; P=0.64; I2 not applicable), PTD (2 studies, OR 1.05; 95% CI 0.74-1.49; P=0.79; I2 = 0%), PPH (1 study, OR 1.49; 95% CI 0.85-2.62; P=0.17; I2not applicable), or PPROM (2 studies, OR 0.74; 95% CI 0.46-1.21; P=0.23; I2 = 0%) between programmed FET cycles and natural FET cycles.Conclusion(s)The risks of HDPs, gestational hypertension, PE, GDM, LGA, macrosomia, SGA, PTD, placenta previa, PPROM, and PPH were increased in programmed FET cycles versus natural FET cycles with overall embryo transfer and blastocyst transfer, but the risks were not clear for cleavage-stage embryo transfer
Adjustment of Synchronization Stability of Dynamic Brain-Networks Based on Feature Fusion
When the brain is active, the neural activities of different regions are integrated on various spatial and temporal scales; this is termed the synchronization phenomenon in neurobiological theory. This synchronicity is also the main underlying mechanism for information integration and processing in the brain. Clinical medicine has found that some of the neurological diseases that are difficult to cure have deficiencies or abnormalities in the whole or local integration processes of the brain. By studying the synchronization capabilities of the brain-network, we can intensively describe and characterize both the state of the interactions between brain regions and their differences between people with a mental illness and a set of controls by measuring the rapid changes in brain activity in patients with psychiatric disorders and the strength and integrity of their entire brain network. This is significant for the study of mental illness. Because static brain network connection methods are unable to assess the dynamic interactions within the brain, we introduced the concepts of dynamics and variability in a constructed EEG brain functional network based on dynamic connections, and used it to analyze the variability in the time characteristics of the EEG functional network. We used the spectral features of the brain network to extract its synchronization features and used the synchronization features to describe the process of change and the differences in the brain network's synchronization ability between a group of patients and healthy controls during a working memory task. We propose a method based on the fusion of traditional features and spectral features to achieve an adjustment of the patient's brain network synchronization ability, so that its synchronization ability becomes consistent with that of healthy controls, theoretically achieving the purpose of the treatment of the diseases. Studying the stability of brain network synchronization can provide new insights into the pathogenic mechanism and cure of mental diseases and has a wide range of potential applications
- …
