5,578 research outputs found

    Secure Pick Up: Implicit Authentication When You Start Using the Smartphone

    Full text link
    We propose Secure Pick Up (SPU), a convenient, lightweight, in-device, non-intrusive and automatic-learning system for smartphone user authentication. Operating in the background, our system implicitly observes users' phone pick-up movements, the way they bend their arms when they pick up a smartphone to interact with the device, to authenticate the users. Our SPU outperforms the state-of-the-art implicit authentication mechanisms in three main aspects: 1) SPU automatically learns the user's behavioral pattern without requiring a large amount of training data (especially those of other users) as previous methods did, making it more deployable. Towards this end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW) algorithm to effectively quantify similarities between users' pick-up movements; 2) SPU does not rely on a remote server for providing further computational power, making SPU efficient and usable even without network access; and 3) our system can adaptively update a user's authentication model to accommodate user's behavioral drift over time with negligible overhead. Through extensive experiments on real world datasets, we demonstrate that SPU can achieve authentication accuracy up to 96.3% with a very low latency of 2.4 milliseconds. It reduces the number of times a user has to do explicit authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies (SACMAT) 201

    Spectroscopic, Viscositic and Molecular Modeling Studies on the Interaction of 3′-Azido-Daunorubicin Thiosemicarbazone with DNA

    Get PDF
    A new daunorubicin has been synthesized and structurally characterized. The interaction of native calf thymus DNA (ctDNA) with 3′-azido-daunorubicin thiosemicarbazone (ADNRT) was investigated under simulated physiological conditions by multi-spectroscopic techniques, viscometric measurements and molecular modeling study. It concluded that ADNRT could intercalate into the base pairs of ctDNA, and the fluorescence quenching by ctDNA was static quenching type. Thermodynamic parameters calculated suggested that the binding of ADNRT to ctDNA was mainly driven by hydrophobic interactions. The relative viscosity of ctDNA increased with the addition of ADNRT, which confirmed the intercalation mode. Furthermore, molecular modeling studies corroborate the above experimental results

    Method based on fast fourier transform for calculating conical refraction of beams with noncircular symmetry

    Get PDF
    Conical refraction of optical beams with circular symmetry is often analyzed using Belsky-Khapalyuk-Berry (BKB) theory; however, for beams with noncircular symmetry, it is difficult to obtain analytical expressions for far-field diffraction patterns. We propose a method, based on fast Fourier transform (FFT), for calculating conical refraction of beams with noncircular symmetry and verify it experimentally using a quasi-plane wave passing through a square aperture and focusing lens. Excellent agreement between theoretical and experimental results has been achieved
    corecore