340 research outputs found
Socioeconomic Drivers of Greenhouse Gas Emissions in the United States
Existing studies examined the U.S.’s direct GHG emitters and final consumers driving upstream GHG emissions, but overlooked the U.S.’s primary suppliers enabling downstream GHG emissions and relative contributions of socioeconomic factors to GHG emission changes from the supply side. This study investigates GHG emissions of sectors in the U.S. from production-based (direct emissions), consumption-based (upstream emissions driven by final consumption of products), and income-based (downstream emissions enabled by primary inputs of sectors) viewpoints. We also quantify relative contributions of socioeconomic factors to the US’s GHG emission changes during 1995–2009 from both the consumption and supply sides, using structural decomposition analysis (SDA). Results show that income-based method can identify new critical sectors leading to GHG emissions (e.g., Renting of Machinery & Equipment and Other Business Activities and Financial Intermediation sectors) which are unidentifiable by production-based and consumption-based methods. Moreover, the supply side SDA reveals new factors for GHG emission changes: mainly production output structure representing product allocation pattern and primary input structure indicating sectoral shares in primary inputs. In addition to production-side and consumption-side GHG reduction measures, the U.S. should also pay attention to supply side measures such as influencing the behaviors of product allocation and primary inputs
LncRNA DANCR restrained the survival of mycobacterium tuberculosis H37Ra by sponging miR-1301-3p/miR-5194
Tuberculosis is a worldwide contagion caused by Mycobacterium tuberculosis (MTB). MTB is characterized by intracellular parasitism and is semi-dormant inside host cells. The persistent inflammation caused by MTB can form a granuloma in lesion regions and intensify the latency of bacteria. In recent years, several studies have proven that long non-coding RNAs (lncRNAs) play critical roles in modulating autophagy. In our study, the Gene Expression Omnibus (GEO) databases were searched for lncRNAs that are associated with tuberculosis. We found that lncRNA differentiation antagonizing non-protein coding RNA (DANCR) increased in the peripheral blood samples collected from 54 pulmonary tuberculosis patients compared to 23 healthy donors. By constructing DANCR overexpression cells, we analyzed the possible cellular function of DANCR. After analyzing our experiments, it was found that the data revealed that upregulation of DANCR facilitated the expression of signal transducer and activator of transcription 3, autophagy-related 4D cysteine peptides, autophagy-related 5, Ras homolog enriched in the brain, and microtubule-associated protein 1A/1B light chain 3 (STAT3, ATG4D, ATG5, RHEB, and LC3, respectively) by sponging miR-1301-3p and miR-5194. Immunofluorescence analysis indicated that DANCR played a positive role in both autophagosome formation and fusion of autolysosomes in macrophages. The colony-forming unit (CFU) assay data also showed that the cells overexpressing DANCR were more efficient in eliminating the intracellular H37Ra strain. Consequently, these data suggest that DANCR restrained intracellular survival of M. tuberculosis by promoting autophagy via miR-1301-3p and miR-5194
The Molecular Mechanism Of Alpha-Synuclein Dependent Regulation Of Protein Phosphatase 2A Activity
Background/Aims: Alpha-synuclein (α-Syn) is a neuronal protein that is highly implicated in Parkinson\u27s disease (PD), and protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that is associated with neurodegenerative diseases, such as PD. α-Syn can directly upregulate PP2A activity, but the underling mechanism remains unclear. Therefore, we investigated the molecular mechanism of α-Syn regulating PP2A activity. Methods: α-Syn and its truncations were expressed in E.coli, and purified by affinity chromatography. PP2A Cα and its mutants were expressed in recombinant baculovirus, and purified by affinity chromatography combined with gel filtration chromatography. The interaction between α-Syn and PP2A Cα was detected by GST pull-down assay. PP2A activity was investigated by the colorimetric assay. Results: The hydrophobic non-amyloid component (NAC) domain of α-Syn interacted with PP2A Cα and upregulated its activity. α-Syn aggregates reduced its ability to upregulate PP2A activity, since the hydrophobic domain of α-Syn was blocked during aggregation. Furthermore, in the hydrophobic center of PP2A Cα, the residue of I123 was responsible for PP2A to interact with α-Syn, and its hydrophilic mutation blocked its interaction with α-Syn as well as its activity upregulation by α-Syn. Conclusions: α-Syn bound to PP2A Cα by the hydrophobic interaction and upregulated its activity. Blocking the hydrophobic domain of α-Syn or hydrophilic mutation on the residue I123 in PP2A Cα all reduced PP2A activity upregulation by α-Syn. Overall, we explored the mechanism of α-Syn regulating PP2A activity, which might offer much insight into the basis underlying PD pathogenesis
miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase
n/
Highly Prevalent Multidrug-Resistant Salmonella From Chicken and Pork Meat at Retail Markets in Guangdong, China
This study aimed to investigate the prevalence, serotype distribution, and antibiotic resistance, and to characterize the extended spectrum β-lactamases (ESBLs) producing Salmonella isolates from chicken and pork meats from retail markets in Guangdong province, China. A total of 903 retail meat samples (475 chicken and 428 pork meats) were obtained from six cities (Guangzhou, Shenzhen, Heyuan, Shaoguan, Foshan, and Yunfu) of Guangdong province between May 2016 and April 2017. High levels of Salmonella contamination were detected in chicken (302/475, 63.6%) and pork (313/428, 73.1%). Thirty-eight serotypes were identified in 615 detected Salmonella, and the serotypes varied greatly between chicken and pork samples. Agona (55/302, 18.2%), Corvallis (45/302, 14.9%), Kentucky (38/302, 12.6%), Mbandaka (32/302, 10.6%) was the dominant serotypes in chicken samples. However, Typhimurium (78/313, 24.9%), Rissen (67/313, 24.1%), Derby (66/313, 21.1%), and London (48, 15.3%) were the most common in pork samples. High rates of antibiotic resistance were found to sulfisoxazole (468/615, 76.1%), tetracycline (463/615, 75.3%), ampicillin (295/615, 48.0%), and ofloxacin (275/615, 44.7%). Notably, antimicrobial susceptibility tests identified resistance to polymyxin B (12/615, 2.0%) and imipenem (3/615, 0.5%). Multidrug-resistance (MDR) was detected in Salmonella isolated from chicken (245/302, 81.1%) and pork (229/313, 73.2%). The resistance rate of different Salmonella serotypes varied widely. Especially, isolates such as Typhimurium, Agona, Corvallis and Kentucky exhibited highly resistance to antibiotics. The MDR rate of Salmonella isolates from chicken was significantly higher than that from pork isolates (P < 0.05). Twenty-one Salmonella isolates were identified as ESBLs-producing, covering six Salmonella serotypes and displaying different pulse field gel electrophoresis (PFGE) genotypes. BlaOXA-1 was the dominant ESBLs gene (9/21, 42.9%), followed by blaCTX-M-55 (5/21, 23.8%). This study indicated that Salmonella was widespread in chicken and pork from retail markets in Guangdong province and the isolates showed high multidrug-resistance, especially the known multidrug-resistant Salmonella serotypes. Therefore, it is important to focus on Salmonella serotypes and strengthen the long-term monitoring of MDR Salmonella serotypes in animal-derived foods
Assessment of the applied potential of sludge-derived hydrochar in terms of process parameters and product properties
Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2
Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching
Recent studies have revealed two distinct pathways for the DNA overstretching transition near 65 pN: ‘unpeeling’ of one strand from the other, and a transition from B-DNA to an elongated double-stranded ‘S-DNA’ form. However, basic questions concerning the dynamics of these transitions, relative stability of the two competing overstretched states, and effects of nicks and free DNA ends on overstretching, remain open. In this study we report that: (i) stepwise extension changes caused by sequence-defined barriers occur during the strand-unpeeling transition, whereas rapid, sequence-independent extension fluctuations occur during the B to S transition; (ii) the secondary transition that often occurs following the overstretching transition is strand-unpeeling, during which the extension increases by 0.01–0.02 nm per base pair of S-DNA converted to single-stranded DNA at forces between 75 and 110 pN; (iii) even in the presence of nicks or free ends, S-DNA can be stable under physiological solution conditions; (iv) distribution of small GC-rich islands in a large DNA plays a key role in determining the transition pathways; and (v) in the absence of nicks or free ends, torsion-unconstrained DNA undergoes the overstretching transition via creation of S-DNA. Our study provides a new, high-resolution understanding of the competition between unpeeling and formation of S-DNA
- …
