16,968 research outputs found

    Pollution Tax under Lobbying Duopolists

    Get PDF
    We study a model which explains a politically determined pollution tax outcome under asymmetric duopoly. We assume an asymmetry of firms in the pollution emissions per unit of output. The polluting duopoly and three-stage political game are considered. We derive the equilibrium tax rate and show that it might excess the marginal external damages, even without an environmental group. The politically determined tax rate is decomposed to the marginal external damages, the imperfect competition effect, and the lobbying effect. Under linear demand and cost functions, we derive the condition that Pigouvian taxation is politically determined. The effect on the equilibrium tax of firm heterogeneity is discussed.Cournot duopoly, firm heterogeneity, lobbying activity, political economy, pollution tax

    Hot isostatic pressing of ceramics

    Get PDF
    A mixture containing glass 70 to 95 and BN or B4C powder (0.1-10 microns) 5 to 30 vol. % is used as a secondary pressure medium in hot isostatic pressing of ceramics. Thus, Pyrex beads were mixed with 15% vol. BN powder (average diameter 2 microns), fused at 1400 deg for 2 h, cooled, crushed, and put into a graphite crucible. A Si3N4 sintered body was embedded in the powder, heated in vacuum at 1200 deg for 2 h, treated in a hot isostatic press furnace at 1700 deg and 1000 atm. for 1 h, and cooled to give a Si3N4 ceramic. It was easily separated from the crucible

    Determinantal Calabi-Yau varieties in Grassmannians and the Givental II-functions

    Full text link
    We examine a class of Calabi-Yau varieties of the determinantal type in Grassmannians and clarify what kind of examples can be constructed explicitly. We also demonstrate how to compute their genus-0 Gromov-Witten invariants from the analysis of the Givental II-functions. By constructing II-functions from the supersymmetric localization formula for the two dimensional gauged linear sigma models, we describe an algorithm to evaluate the genus-0 A-model correlation functions appropriately. We also check that our results for the Gromov-Witten invariants are consistent with previous results for known examples included in our construction.Comment: 50 page

    On the Flux Vacua in F-theory Compactifications

    Full text link
    We study moduli stabilization of the F-theory compactified on an elliptically fibered Calabi-Yau fourfold. Our setup is based on the mirror symmetry framework including brane deformations. The complex structure moduli dependence of the resulting 4D N=1 effective theory is determined by the associated fourfold period integrals. By turning on appropriate G-fluxes, we explicitly demonstrate that all the complex structure moduli fields can be stabilized around the large complex structure point of the F-theory fourfold.Comment: 5 pages, v2: published versio

    Declining Rotation Curve and Brown Dwarf MACHOs

    Get PDF
    If the Galactic rotation speed at the Solar circle is 200\sim 200 km s1^{-1} or smaller, which is supported by several recent studies, the rotation curve of the Galaxy could be declining in the outermost region. Motivated by this, we investigate the effect of such declining rotation curve on the estimate of the MACHO mass and the fractional contribution of the MACHOs to the Galactic dark halo. Using Hernquist and Plummer halo models instead of the standard halo model, we find that the MACHO mass could be significantly smaller than that for the standard halo case. In particular, there exists a certain set of halo parameters for which the MACHO mass is 0.1MM_\odot or less and at the same time the MACHO contribution to the total mass of the halo is almost 100 %. This result indicates that a halo which consists solely of brown dwarfs can be consistent with both of the observed microlensing properties and the constraints from the rotation curve, provided the outer rotation curve is indeed declining.Comment: 8 pages and 4 figures, accepted for publication in ApJ Letter

    Micro-Arcsecond Radio Astrometry

    Full text link
    Astrometry provides the foundation for astrophysics. Accurate positions are required for the association of sources detected at different times or wavelengths, and distances are essential to estimate the size, luminosity, mass, and ages of most objects. Very Long Baseline Interferometry at radio wavelengths, with diffraction-limited imaging at sub-milliarcsec resolution, has long held the promise of micro-arcsecond astrometry. However, only in the past decade has this been routinely achieved. Currently, parallaxes for sources across the Milky Way are being measured with ~10 uas accuracy and proper motions of galaxies are being determined with accuracies of ~1 uas/y. The astrophysical applications of these measurements cover many fields, including star formation, evolved stars, stellar and super-massive black holes, Galactic structure, the history and fate of the Local Group, the Hubble constant, and tests of general relativity. This review summarizes the methods used and the astrophysical applications of micro-arcsecond radio astrometry.Comment: To appear in Annual Reviews of Astronomy and Astrophysics (2014

    Planar hole-doping concentration and effective three-dimensional hole-doping concentration for single-layer high-TcT_c superconductors

    Get PDF
    We propose that physical properties for the high temperature superconductors can be addressed by either a two-dimensional planar hole-doping concentration (PplP_{pl}) or an effective three-dimentional hole-doping concentration (P3DP_{3D}). We find that superconducting transition temperature (TcT_c) exhibits a universal dome-shaped behavior in the TcT_c vs.vs. P3DP_{3D} plot with a universal optimal doping concentration at P3DP_{3D} \sim 1.6 ×\times 1021^{21} cm3^{-3} for the single-layer high temperature superconductors.Comment: 2pages, 2 figures, submitted to Physica C (Proceedings of M2S-HTSC VIII) ; Ref. 10 is revise
    corecore