2,076 research outputs found
Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid
Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due
to the strong viscous damping of the cantilever resonance. Here we show that a
high-quality resonance (Q>20) can be achieved in aqueous solution by attaching
a microgram-bead at the end of the nanogram-cantilever. The resulting increase
in cantilever mass causes the resonance frequency to drop significantly.
However, the force sensitivity --- as expressed via the minimum detectable
force gradient --- is hardly affected, because of the enhanced quality factor.
Via the enhancement of the quality factor, the attached bead also reduces the
relative importance of noise in the deflection detector. It can thus yield an
improved signal-to-noise ratio when this detector noise is significant. We
describe and analyze these effects for a set-up which includes magnetic
actuation of the cantilevers and which can be easily implemented in any AFM
system that is compatible with an inverted optical microscope.Comment: The following article has been accepted by Journal of Applied
Physics. After it is published, it will be found at http://jap.aip.org
Linear and field-independent relation between vortex core state energy and gap in Bi2Sr2CaCu2O8+d
We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi2Sr2CaCu2O8+δ. The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7-δ. Finally, these states do not show any dependence on the applied magnetic field between 1 and 6 T
Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties
The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups
Strategies for estimating human exposure to mycotoxins via food
In this review, five strategies to estimate mycotoxin exposure of a (sub-) population via food, including data collection, are discussed with the aim to identify the added values and limitations of each strategy for risk assessment of these chemicals. The well-established point estimate, observed individual mean, probabilistic and duplicate diet strategies are addressed, as well as the emerging human biomonitoring strategy. All five exposure assessment strategies allow the estimation of chronic (long-term) exposure to mycotoxins, and, with the exception of the observed individual mean strategy, also acute (short-term) exposure. Methods for data collection, i.e. food consumption surveys, food monitoring studies and total diet studies are discussed. In food monitoring studies, the driving force is often enforcement of legal limits, and, consequently, data are often generated with relatively high limits of quantification and targeted at products suspected to contain mycotoxin levels above these legal limits. Total diet studies provide a solid base for chronic exposure assessments since they provide mycotoxin levels in food based on well-defined samples and including the effect of food preparation. Duplicate diet studies and human biomonitoring studies reveal the actual exposure but often involve a restricted group of human volunteers and a limited time period. Human biomonitoring studies may also include exposure to mycotoxins from other sources than food, and exposure to modified mycotoxins that may not be detected with current analytical methods. Low limits of quantification are required for analytical methods applied for data collection to avoid large uncertainties in the exposure due to high numbers of left censored data, i.e. with levels below the limit of quantification
Optical shield: measuring viscosity of turbid fluids using optical tweezers
The viscosity of a fluid can be measured by tracking the motion of a suspended micron-sized particle trapped by optical tweezers. However, when the particle density is high, additional particles entering the trap compromise the tracking procedure and degrade the accuracy of the measurement. In this work we introduce an additional Laguerre–Gaussian, i.e. annular, beam surrounding the trap, acting as an optical shield to exclude contaminating particles
Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy
We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton
First direct observation of the Van Hove singularity in the tunneling spectra of cuprates
In two-dimensional lattices the electronic levels are unevenly spaced, and
the density of states (DOS) displays a logarithmic divergence known as the Van
Hove singularity (VHS). This is the case in particular for the layered cuprate
superconductors. The scanning tunneling microscope (STM) probes the DOS, and is
therefore the ideal tool to observe the VHS. No STM study of cuprate
superconductors has reported such an observation so far giving rise to a debate
about the possibility of observing directly the normal state DOS in the
tunneling spectra. In this study, we show for the first time that the VHS is
unambiguously observed in STM measurements performed on the cuprate Bi-2201.
Beside closing the debate, our analysis proves the presence of the pseudogap in
the overdoped side of the phase diagram of Bi-2201 and discredits the scenario
of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure
Magnetic field induced charge and spin instabilities in cuprate superconductors
A d-wave superconductor, subject to strong phase fluctuations, is known to
suffer an antiferromagnetic instability closely related to the chiral symmetry
breaking in (2+1)-dimensional quantum electrodynamics (QED3). On the basis of
this idea we formulate a "QED3 in a box" theory of local instabilities of a
d-wave superconductor in the vicinity of a single pinned vortex undergoing
quantum fluctuations around its equilibrium position. As a generic outcome we
find an incommensurate 2D spin density wave forming in the neighborhood of a
vortex with a concomitant "checkerboard" pattern in the local electronic
density of states, in agreement with recent neutron scattering and tunneling
spectroscopy measurements.Comment: 4 pages REVTeX + 2 PostScript figures included in text. Version to
appear in PRL (minor stylistic changes, references updated). For related work
and info visit http://www.physics.ubc.ca/~fran
Effects of organically and conventionally produced feed on biomarkers of health in a chicken model
Consumers expect organic products to be healthier. However, limited research has been performed to study the effect of organic food on health. The present study aimed to identify biomarkers of health to enable future studies in human subjects. A feeding experiment was performed in two generations of three groups of chickens differing in immune responsiveness, which were fed identically composed feeds from either organic or conventional produce. The animals of the second generation were exposed to an immune challenge and sacrificed at 13 weeks of age. Feed and ingredients were analysed on macro- and micronutrients, i.e. vitamins, minerals, trace elements, heavy metals and microbes. The chickens were studied by general health and immune parameters, metabolomics, genomics and post-mortem evaluation. The organic and conventional feeds were comparable with respect to metabolisable energy. On average, the conventionally produced feeds had a 10 % higher protein content and some differences in micronutrients were observed. Although animals on both feeds were healthy, differences between the groups were found. The random control group of chickens fed conventional feed showed overall a higher weight gain during life span than the group on organic feed, although feed intake was mostly comparable. The animals on organic feed showed an enhanced immune reactivity, a stronger reaction to the immune challenge as well as a slightly stronger ‘catch-up growth’ after the challenge. Biomarkers for future research were identified in the parameters feed intake, body weight and growth rate, and in immunological, physiological and metabolic parameters, several of these differing most pronounced after the challeng
Imaging the essential role of spin-fluctuations in high-Tc superconductivity
We have used scanning tunneling spectroscopy to investigate short-length
electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show
that the superconducting gap and the energy Omega_dip, defined as the
difference between the dip minimum and the gap, are both modulated in space
following the lattice superstructure, and are locally anti-correlated. Based on
fits of our data to a microscopic strong-coupling model we show that Omega_dip
is an accurate measure of the collective mode energy in Bi-2223. We conclude
that the collective mode responsible for the dip is a local excitation with a
doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure
- …
